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Abstract

We formalize, using Isabelle/HOL, some languages present in the first two
sections, namely “Untyped Systems” and “Simple Types”, of the book Types
and Programming Languages [Pie02] by Benjamin C. Pierce. We first be-
gin with a short tour of the λ-calculus, type systems and the Isabelle/HOL
theorem prover before attacking the formalization per se. Starting with an
arithmetic expressions language offering Booleans and natural numbers, we
pursue, after a brief digression to de Bruijn indices, to the untyped λ-calculus.
Then, we return to a typed variant of the arithmetic expression language be-
fore concluding with the simply typed λ-calculus.
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1 Introduction
This Bachelor’s thesis deals with the formalisation of parts of the book Types
and Programming Languages [Pie02], hereafter abbreviated TAPL, by Ben-
jamin C. Pierce. The formalization is performed using the Isabelle/HOL
theorem prover. This work concentrates on four languages, ranging from
simple arithmetic expressions to the fully fledged λ-calculus, present in the
first two sections, namely “Untyped Systems” and “Simple Types”.

The main motivation to have chosen this subject is the intersection of
personal interest and of opportunities provided by my internship at the chair
for logic and verification at Technische Universität München. Having gradu-
ally developed an interest for programming languages in the last years, I was
eager to learn more about the theory behind type systems. Pierce’s book
stood out as a reference recommended for a deep introduction to the main
elements of this field. Also, as part of my internship, I worked on the imple-
mentation of the (co)datatype module in the Isabelle/HOL theorem prover.
Having experienced the implementer role, I also wanted to learn about the
user role and the process of formalization. Thus, the choice of this subject
for this thesis was an opportunity to fulfill both goals.

Before entering into the realm of formalizations, we first introduce the re-
quired background (Section 2) for λ-calculus, type systems and Isabelle/HOL.
The λ-calculus is a core calculus that captures the essential features of func-
tional programming languages. That is, there exists a way to encode high
level features such as recursion, datatypes, records, etc. Such calculus can
come, as programming languages do, in two variants: typed and untyped.
A type system is a syntactic method for automatically checking the absence
of certain erroneous behaviors. To formalize these, we used Isabelle/HOL,
an interactive theorem prover based on higher order logic. It resembles a
functional programming language in that one can define datatypes and func-
tions. The difference is that it allows to postulate properties of the formerly
defined elements and to provide machine checked poofs that those properties
are theorems.

The formalizations we perform all have a direct correspondence with chap-
ters from TAPL (Section 3). We provide one Isabelle/HOL theory file per
chapter.

The untyped arithmetic expressions language (Section 4) serves as a
warm-up to experiment with the general structure of formalizations. It con-
sists of Boolean expressions and natural numbers. This simplicity allows us
to concentrate on the translation to Isabelle/HOL of the definitions found in
the book and to accustom ourselves with the notation. Most of our definitions
and theorems closely follows the ones from the book. The main exceptions
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are that we expose some hypotheses that are implicit in the book and that
we use a different definition of the multi-step evaluation relation.

The formalization (Section 5) of the nameless representation of terms,
also known as de Bruijn indices [Bru72], was not initially planned but arose
from the need to use a concrete representation for variables in the λ-calculus.
Our formalization closely follows the book.

While the previous formalizations are either a warm-up or a representa-
tion necessity, the untyped λ-calculus (Section 6) is the first core calculus
we formalized. We differ from the book in the definition of the evaluation
relation. In TAPL, the evaluation relation assumes that name clashes in
variables are automatically solved by renaming them and, thus, ignore this
possibility from there on. Such an assumption is not accepted by computer-
verified proofs. We use de Bruijn indices as representation for variables to
encode this assumption. Also, since the chapter in the book is more focused
on explaining the λ-calculus, it contains no meaningful theorems. Never-
theless, we revisit the properties introduced with the arithmetic expressions
language and either prove that they are still theorems or disprove them.

The typed arithmetic expressions language (Section 7) is again a warm-
up; this time, to experiment with the formalization of a type system. Our
formalization closely follows the book.

The simply typed λ-calculus (Section 8) is the second core calculus we
formalize. Here, we differ significantly from the book, mainly because of
our use of de Bruijn indices but also because of our representation of the
typing context, we need to adapt some lemmas and replace others. This
is certainly the most challenging part of the formalization, since we cannot
follow the described proofs anymore and must find the right assumptions for
our lemmas. In spite of these differences, our formalization still respects the
spirit of the book since only the helper lemmas change, and the important
theorems remain the same.

All sections combined, the formalization consists of 800 lines of defini-
tions, theorems and exercises proposed in the book. It is publicly available1

and can be executed with Isabelle 2014.2 In this report, we focus on the
definitions and how the theorems are expressed. When relevant, we present
both the definitions from the book and our translation, highlighting and mo-
tivating the differences. Some proofs are presented but not explained. For a
deeper insight into the proofs, the best methodology is to study the theory
files in Isabelle.

1https://github.com/authchir/log792-type-systems-formalization
2http://isabelle.in.tum.de/website-Isabelle2014/

https://github.com/authchir/log792-type-systems-formalization
http://isabelle.in.tum.de/website-Isabelle2014/
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2 Background

2.1 Lambda-Calculus

The λ-calculus is a minimalistic language, where every value is a function,
that can be used as a core calculus capturing the essential features of complex
functional programming languages. It was formulated by Alonzo Church
[Chu36] in the 1930s as a model of computability. At about the same time,
Alan Turing was formulating what is now known as a Turing machine [Tur36]
for the same purpose. It was later proved that both systems are equally
expressive [Tur37].

As a programming language, the λ-calculus can be intriguing at first
because everything reduces to function abstraction and application. The
syntax comprises three sorts of terms: variables, function abstractions over
a variable and applications of a term to an other. Those three constructs are
summarized in the following grammar:

t ::=

x variable
λx. t abstraction
t1 t2 application

Below are a few standard λ-terms shown as examples of how the grammar
is actually used:3

λx. x identity
λx. λy. x constant
λf. λx. f x x double application
λf. λg. λx. f (g x) function composition

The λ-calculus having no built-in constant or primitive operators (e.g.
numbers, arithmetic operations, conditionals, loops, etc.), the only way to
compute a value is by function application, also known as β-reduction and
denoted by →β). It consists of replacing every instance of the abstracted
variable in the abstraction body by the provided argument. Following is an

3To reduce the need for parentheses, we use the following standard conventions: (1) the
body of a λ-abstraction expands as far as possible to the right and (2) function application
is left-associative.
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example of a λ-term that is β-reduced three times:

(λx. (λy. y) x) ((λw. w) z) →β (λx. (λy. y) x) z

→β (λy. y) z

→β z

This apparently simple operation hides a subtle corner case: name clashes.
Nothing prevents two functions from using the same name for their abstracted
variable. One cannot simply replace every variable with the same name when
performing a substitution but must also take variable scopes into account.
Here is a simple example that demonstrates that a naive approach can fail
to preserve the semantics of the original λ-term:

(λx. λy. x) y 6→β λy. y

One solution to this problem is to rename function arguments, also known
as α-equivalence and denoted by =α, prior to β-reduction. Here is a correct
β-reduction for the previous example:

(λx. λy. x) y =α (λx. λw. x) y

→β λw. y

The difference is important: under the naive approach, the λ-term was
wrongly reduced to the identity function while the correct reduction lead to
a function returning the constant y.

Many constructions from high level programming languages can be en-
coded using only those basic features. Unary functions are already supported
and n-ary functions can be straightforwardly emulated by having a function
return another function, as was done in the previous examples:

n-ary function ≡ λx1. λx2. · · · λxn. t

Another common construction is a let binding which serves to attach an
identifier to a complex expression. It can be emulated in the λ-calculus with
a single function abstraction:

let x = y in t ≡ (λx. t) y

Although significantly less obvious, it is also possible to express Booleans
only with functions. The encoding is based on the idea that any use of
Booleans can be expressed with only three primitives: a constant representing
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a true value, a constant representing a false value and an operation to choose
between two options:

true ≡ λt. λf. t

false ≡ λt. λf. f

if b then t else e ≡ λb. λt. λf. b t f

Using the rules already discussed, it is easy to show that the following
reduction is valid:4

if true then x else y ≡ (λb. λt. λf. b t f) true x y

→∗β true x y

≡ (λt. λf. t) x y

→∗β x

Other encodings exist for constructions such as numbers, list, datatypes,
arbitrary recursion, etc. For a more comprehensive introduction to the sub-
ject, Hankin’s monograph [Han04] is a good starting point.

2.2 Type Systems

Type systems are a syntactic method to prove the absence of certain erro-
neous behaviors. They differ from testing in that they are exhaustive and
compositional. In this context, exhaustiveness means that each checked in-
variant is proved for the complete program instead of focusing on a single unit
of code. Compositionality means that proofs for individual components can
be used to discharge an obligation about the interaction of the components.

The kinds of errors detected depend on the specific type system consid-
ered: they can range from fairly simple to very complex. Examples of simple
errors include typographical mistakes, usage of values of the wrong kind and
usage of undefined operations:5

add : N→ N→ N
true : B
add true true

Error in function application,
“add” expects a N as first ar-
gument but a B was provided.

4Multiple consecutive β-reductions are denoted with →∗
β .

5The syntax T1 → T2 is the standard notation for the type of a function with domain
T1 and codomain T2. The → operator being right-associative, the type T1 → (T2 → T3)
can be written without parentheses: T1 → T2 → T3.
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With sufficiently powerful type systems, specific requirements can be pro-
vided as type annotations. Examples of such include that the output of a
sorting function is a permutation of its input, that the argument of an index-
ing operation on a list is in a valid range and that two multiplied matrices
have compatible dimensions. The more information one puts in the types, the
more invalid programs the type checker can catch. The interactive theorem
prover Coq is based on this idea: each transformation, including theorems, is
internally a type-transformation. The drawback of such expressive type sys-
tems is that more work is required by the programmer to convince the type
checking algorithm that the program fulfills its specification. An important
design decision when defining a type system is to find a tradeoff between
those conflicting goals.

Since they are often bundled with the compiler of a programming language
and, thus, part of the normal programming cycle, type systems allow early
detection of programming errors. Moreover, the diagnoses of type checkers
can often pointed accurately the source of the error, unlike run-time tests
where the effect of an error can sometime be visible only much further in the
code when something starts to go wrong.

Another important way in which type systems can be used is as an ab-
straction tool. Large scale software generally consist of modules that com-
municate through interfaces. Types are a natural fit to serve as such an
interface. Even in smaller scale programming, it is useful to characterize a
datatype not by the way it is implemented but by the different operations
that can be perform on it. This focus on operations led to the concept of
abstract datatypes.

Types can also be used an invaluable maintenance tool. They serve as a
checked documentation of programs and, being simpler than the computa-
tions they characterize, they can help to reason about such computations on
a higher level. But they can also serve a very practical purpose, by checking
which part of a program is affected by a change. If one decides to change
the arguments of a function or to remove a field in a structure, a simple
type checking pass will provide an exhaustive list of the places that must be
updated.

Due to their static nature, type systems are normally conservative in that
they will always reject bad programs at the expense of sometime rejecting
good ones. A simple example of such limitation is the following program that
fails to type-check, even though the Boolean expression will always evaluate
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to true at runtime:

if true then 42 else true

Type mismatch in conditional ex-
pression, the type of the “then”
branch is N while the type of the
“else” branch is B.

Having only access to static information, a type checker only see that a
Boolean can take two different values and, thus, must ensure that the pro-
gram is valid in both cases. In this example, this implies that both branches
of the “if” must be well typed and that their types must be compatible. It
is the main goal of researchers on type systems to develop systems in which
more valid programs are accepted while more invalid programs are rejected.

2.3 Isabelle/HOL

This section only presents briefly the most used constructions in the formal-
izations described in this thesis. It is not expected from the reader to fully
understand the proofs presented in this report; it is sufficient to recognize
key concepts such as induction and case analysis.

The theorem proving community is subdivided in two groups: automatic
theorem proving (ATP) and interactive theorem proving (ITP). Each has its
own set of goals, motivations, methodologies, tools and terminology. In ATP,
one must formulate its context and equations in some logical formalism and
ask the theorem prover to find a proof. The limiting factor is the algorithm
used by the tool. Examples of such provers include SPASS, Vampire and
Z3. In ITP, one must also formulate its context and equations in some
logical formalism, although usually a more expressive one, but must also give
instructions guiding the prover. The term proof assistant is sometime used
to highlight this collaboration between the human and the machine. Here,
the limiting factor is the ability of the human to guide its tool. Examples
of interactive theorem provers include Agda, Coq and Isabelle. Isabelle is a
generic interactive theorem prover for implementing logical formalisms and
Isabelle/HOL is its specialization to a formalism called higher order logic.

An Isabelle theory file serves as the basic unit of encapsulation of formal-
izations and reusable libraries. It is analogous to modules in programming
languages. Every definition and theorem developed must belong to a theory
and can be made accessible to other theories by importing them.

Types and function definitions serve to describe entities and how to op-
erate on them. They work in a very similar way to their counterpart in func-
tional programming languages. A new type is introduced with the datatype
command, followed by the name of the type and the different constructors
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separated by a |. Following is the standard definition of the type of para-
metric lists:6

datatype-new ′a list = Nil | Cons (head : ′a) (tail : ′a list)

The datatype consists of two constructors. The first one, Nil, is used
to represent the empty list while the second one, Cons, is used to add an
element in front of an existing list. Using those two primitives, a list can be
created by successive application of the Cons constructor (e.g. Cons 1 (Cons
2 (Cons 3 Nil))). The ’a in front of the name is a placeholder for a concrete
type that must be provide later (e.g. the type of the previous example could
be nat list).

Function definitions can take many forms in Isabelle/HOL. A primitively
recursive function is introduced with the primrec command and defined by
pattern matching over its arguments. Each pattern match entry must then
provide the value to which the function evaluates. Following is a definition
of a higher order function (i.e. a function that takes a function as argument)
that checks if all the elements of a list are ordered with respect to a binary
predicate provided as an argument:

primrec ordered :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool where
ordered p Nil = True |
ordered p (Cons x xs) = (case xs of

Nil ⇒ True |
Cons y ys ⇒ p x y ∧ ordered p xs)

An alternative way in which this function could be defined is inductively.
Introduced with the inductive command, it allows to express Boolean func-
tions by providing an inductive definition of when the function should eval-
uate to true, leaving all the other cases to false. The definition consists of
base cases and possibly many inductive cases. Following is the same function
defined inductively:7

inductive ordered ′ :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool where
empty-list :
ordered ′ p Nil |

singleton-list :
ordered ′ p (Cons x Nil) |

arbitrary-list :
p x1 x2 =⇒ ordered ′ p (Cons x2 xs) =⇒ ordered ′ p (Cons x1 (Cons x2 xs))

6Prefixing an element with a descriptive name, as done for the arguments of the Cons
constructor, is a common pattern in Isabelle/HOL. The syntax is always name : element.

7Here, a descriptive name have been given to each rule. The base cases are empty-list
and singleton-list while the inductive case is arbitrary-list.
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Theorems, also named lemmas, are true facts involving the defined el-
ements. They could be compared to the assertions used in programming
languages. The main difference is that asserts are validate by evaluating the
expression while theorems are validated by a formal proof. This is the point
where the analogy with programming languages stops since this concept is
unique to theorem provers. In Isabelle/HOL, a proof can take two forms: a
low level sequence of apply steps or higher level structured definition. Fol-
lowing is an example of a lemma that proves, using the low level style, that
the list of increasing natural numbers are ordered with respect to the usual
comparison operation:
lemma ordered (λx (y :: nat). x < y) (Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))))
apply (unfold ordered .simps)
apply (unfold list .case)
apply (rule conjI , simp)+
apply (rule TrueI )

done

This proof is easily checked by a computer but very hard to read for a
human. For this reason, the alternative structured Isar proof language was
designed to allow the writing of more human-friendly proofs. Following is a
theorem showing that, whenever the ordered function returns true for a given
predicate and list, the ordered ′ function will also return true:8

lemma primrec-imp-inductive:
ordered f xs =⇒ ordered ′ f xs

proof (induction xs rule: list .induct)
case Nil
thus ?case by (auto intro: ordered ′.intros)

next
case (Cons y ys)
thus ?case by (cases ys rule: list .exhaust) (auto intro: ordered ′.intros)

qed

This proof is still easily checked by a computer but is also more readable
for a human. It is easy to see that the proof works by induction on the list xs,
that the base case (Nil) is first proved and that in the inductive case (Cons),
a cases analysis of the values the argument ys can take is performed.

For a more comprehensive introduction to Isabelle/HOL, the reader is
encourage to start with the first part of the book Concrete Semantics [NK14]
and continue, for a deeper understanding, with the more exhaustive tutorial
[NPW14] distributed with the system.

8In Isabelle, every unbound term is implicitly universally quantified: n + 1 > n ≡
(∀n. n+ 1 > n).
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3 Structure of the Formalization
In this thesis, we formalize six chapters of the first two sections of TAPL.
Figure 1 presents the table of contents of those two sections — the formalized
chapters are in bold — and Figure 2 presents the dependencies between the
chapters; a normal arrow implies a direct dependency while a dashed arrow
only imply that the knowledge learned in one chapter is reused.

I Untyped Systems

§ 3 Untyped Arithmetic Expressions

§ 4 An ML Implementation of Arithmetic Expressions

§ 5 The Untyped Lambda-Calculus

§ 6 Nameless Representation of Terms

§ 7 An ML Implementation of the Lambda-Calculus

II Simple Types

§ 8 Typed Arithmetic Expressions

§ 9 Simply Typed Lambda-Calculus

§ 10 An ML implementation of Simple Types

§ 11 Simple Extensions

§ 12 Normalization

§ 13 References

§ 14 Exceptions

Figure 1: Part I and II of TAPL

6

5

9

3

8

Figure 2: Dependencies between the
chapters of TAPL

6

5

9

3

8

Figure 3: Dependencies between the
theory files

The formalization closely follows the structure of the book. We pro-
vide one Isabelle theory file per chapter and mainly introduce them in the
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same order. The only exception is the chapter on “Nameless Representation
of Terms”. In the book, it is treated as a completely separate issue from
the chapters on λ-calculus (i.e. as an encoding that can be useful for an
implementation). They present it as a concrete alternative to the implicit
α-conversion they assume in their proofs, which is nice for humans but not
rigorous enough for a computer. Even though a formalization is different
from an implementation it has some similar requirements. Since we chose
this nameless representation for our formalization, we must diverge from the
book and introduce this subject before the untyped λ-calculus. Figure 3
presents the dependencies between our Isabelle theory files.

It is possible to directly base the typed arithmetic expressions on untyped
arithmetic expression by importing the theory and reusing its definition. This
reuse is possible because, for this language, types are external to the repre-
sentation of terms. The same argument applies to the untyped λ-calculus.
By contrast, for the typed λ-calculus, we need to alter the representation of
terms to add the typing annotation on abstraction variables, thus preventing
the reuse of the untyped λ-calculus theory. This is represented as a dotted
arrow.

4 Untyped Arithmetic Expressions

The language of untyped arithmetic expressions consists of Boolean expres-
sions, containing the constants true and false and conditionals as primi-
tives, and natural numbers, containing the constant zero, the successor and
predecessor functions and an operation to test equality with zero as primi-
tives. Following the book, we start with a subset containing only the Boolean
expression and carry on with fully fledged arithmetic expressions.

4.1 Booleans

The syntax of this language is defined, in the book, in the following way:

t ::=

true constant true
false constant false
if t then t else t conditional
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Its counterpart, using Isabelle/HOL’s syntax, is a recursive datatype: 9

datatype bterm =
BTrue |
BFalse |
BIf bterm bterm bterm

The semantics of the language is defined using the small-step operational
semantics which consists of an evaluation relation that performs the smallest
possible step towards the final value. Values are a subset of terms that are
considered as the final output of a computation. For the Booleans, the only
values are the constants BTrue and BFalse. To describe these, the book uses
the following notation:

t ::=

true true value
false false value

We translate this in Isabelle/HOL using an inductive predicate that returns
true if its argument is a value:

inductive is-value-B :: bterm ⇒ bool where
is-value-B BTrue |
is-value-B BFalse

The evaluation relation is concerned with the way a conditional expression
will be reduced. The book uses the standard mathematical notation for
inference rules:

if true then t2 else t3 =⇒ t2 (1)

if false then t2 else t3 =⇒ t3 (2)

t1 =⇒ t′1
if t1 then t2 else t3 =⇒ if t′1 then t2 else t3

(3)

The first rule states that the evaluation of a conditional with a true condition
leads to the “then” branch, the second rule states that the evaluation of a
conditional with a false condition leads to the “else” branch and the third
rule states that, if the condition is not a Boolean constant, it must be itself

9To prevent name clashes with Isabelle’s predefined types and constants of the same
name, our types and type constructors are prefixed with b, which stand for Booleans.
Functions use a suffix for the same purpose.
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evaluated. These rules translate easily into another inductive predicate that
returns true if the first argument can be reduced in one step to the second
argument:

inductive eval1-B :: bterm ⇒ bterm ⇒ bool where
eval1-BIf-BTrue:
eval1-B (BIf BTrue t2 t3 ) t2 |

eval1-BIf-BFalse:
eval1-B (BIf BFalse t2 t3 ) t3 |

eval1-BIf :
eval1-B t1 t1 ′ =⇒ eval1-B (BIf t1 t2 t3 ) (BIf t1 ′ t2 t3 )

With these basic definitions, we can turn to the first theorem: the determi-
nacy of one-step evaluation. This theorem states that the evaluation relation
is deterministic (i.e. there is only one way in which a given term can be
evaluate). The focus of this paper being on the definitions and theorems, we
can skim over the proof, just highlighting that it goes by induction over the
evaluation relation and that it involves some case analyses:

theorem eval1-B-determinacy :
eval1-B t t ′ =⇒ eval1-B t t ′′ =⇒ t ′ = t ′′

proof (induction t t ′ arbitrary : t ′′ rule: eval1-B .induct)
case (eval1-BIf-BTrue t1 t2 )
thus ?case by (auto elim: eval1-B .cases)

next
case (eval1-BIf-BFalse t1 t2 )
thus ?case by (auto elim: eval1-B .cases)

next
case (eval1-BIf t1 t1 ′ t2 t3 )
from eval1-BIf .prems eval1-BIf .hyps show ?case
by (auto dest : eval1-BIf .IH elim: eval1-B .cases)

qed

A key concept is that of normal form, for which the book gives the following
definition:

A term t is in normal form if no evaluation rule applies to it —
i.e., if there is no t′ such that t→ t′.

Since this definition mainly introduces some standard terminology for a prop-
erty of terms with respect to the single-step evaluation relation, we translate
it using a simple definition:
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definition is-normal-form-B :: bterm ⇒ bool where
is-normal-form-B t ←→ (∀ t ′. ¬ eval1-B t t ′)

We continue by proving that every value is in normal form:
theorem value-imp-normal-form:
is-value-B t =⇒ is-normal-form-B t

by (auto elim: is-value-B .cases eval1-B .cases simp: is-normal-form-B-def )

For this simple language, the converse is also true: every term in normal
form is a value. Our proof follows the book and use contradiction, structural
induction over t and case analysis over the possible values.
theorem normal-form-imp-value:
is-normal-form-B t =⇒ is-value-B t

by (rule ccontr , induction t rule: bterm.induct)
(auto
intro: eval1-B .intros is-value-B .intros
elim: is-value-B .cases
simp: is-normal-form-B-def )

The one-step evaluation is a useful representation of the semantic of a lan-
guage, but it does not represent what really interests us: the final value of
an evaluation. To this end, the book defines a multi-step evaluation relation
based on the single-step one:

The multi-step evaluation relation →∗ is the reflexive, transitive
closure of one-step evaluation. That is, it is the smallest relation
such that (1) if t t → t′ then t →∗ t′, (2) t →∗ t for all t, and
(3) if t→∗ t′ and t′ →∗ t′′, then t→∗ t′′.

A direct translation to Isabelle/HOL would lead to the following definition:
inductive eval-direct :: bterm ⇒ bterm ⇒ bool where
e-once:
eval1-B t t ′ =⇒ eval-direct t t ′ |

e-self :
eval-direct t t |

e-transitive:
eval-direct t t ′ =⇒ eval-direct t ′ t ′′ =⇒ eval-direct t t ′′

However, this definition is inconvenient for theorem proving because it re-
quires us to consider three cases for each induction on a evaluation relation.
Instead, we choose to define the multi-step evaluation relation using a shape
similar to a list of one-step evaluations. The inductive definition consists of a
base case, the reflexive application, and of an inductive case where one step
of evaluation is performed:
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inductive eval-B :: bterm ⇒ bterm ⇒ bool where
eval-B-base:
eval-B t t |

eval-B-step:
eval1-B t t ′ =⇒ eval-B t ′ t ′′ =⇒ eval-B t t ′′

We then prove that this definition is equivalent to the direct translation of
the definition found in the book:

lemma eval-B-once:
eval1-B t t ′ =⇒ eval-B t t ′

by (simp add : eval-B .intros)

lemma eval-B-transitive:
eval-B t t ′ =⇒ eval-B t ′ t ′′ =⇒ eval-B t t ′′

by (induction t t ′ rule: eval-B .induct) (auto intro: eval-B .intros)

lemma eval-direct-eq-eval-B :
eval-direct = eval-B

proof ((rule ext)+, rule iffI )
fix t t ′

assume eval-direct t t ′

thus eval-B t t ′

by (auto intro: eval-B .intros elim: eval-direct .induct eval-B-once eval-B-transitive)
next
fix t t ′

assume eval-B t t ′

thus eval-direct t t ′

by (auto intro: e-self dest !: e-once elim: eval-B .induct e-transitive)
qed

The next theorem we consider is the uniqueness of normal form, which is a
corollary of the determinacy of the single-step evaluation:

corollary uniqueness-of-normal-form:
eval-B t u =⇒ is-normal-form-B u =⇒
eval-B t u ′ =⇒ is-normal-form-B u ′ =⇒
u = u ′

by (induction t u rule: eval-B .induct)
(metis eval-B .cases is-normal-form-B-def eval1-B-determinacy)+

The last theorem we consider is the termination of evaluation. To prove it,
we need first to add a helper lemma, which was implicitly assumed in the
book, about the size of terms after evaluation:
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lemma eval-once-size-B :
eval1-B t t ′ =⇒ size-B t > size-B t ′

by (induction t t ′ rule: eval1-B .induct) simp-all

theorem termination-of-evaluation:
∃ t ′. eval-B t t ′ ∧ is-normal-form-B t ′

by (induction rule: measure-induct-rule[of size-B ])
(metis eval-B .intros eval-once-size-B is-normal-form-B-def )

4.2 Arithmetic Expressions

We now turn to the fully fledged arithmetic expression language. The syntax
is defined in the same way as for Booleans:10

datatype nbterm =
NBTrue |
NBFalse |
NBIf nbterm nbterm nbterm |
NBZero |
NBSucc nbterm |
NBPred nbterm |
NBIs-zero nbterm

Values now consist either of Booleans or numeric values, for which a separate
inductive definition is given. Here is the definition as found in the book:

v ::=

true true value
false false value
nv numeric value

nv ::=

0 zero value
succ nv successor value

Our inductive definition is very similar, but contains explicit assumptions on
the nature of nv. The book uses naming conventions which define letters such
as t as always representing terms, letters such as v as always representing
values and variants of nv as always representing numeric values. In our for-
malization, such implicit assumption is possible for t because Isabelle/HOL
infers that nberm is the only type that could be place at this position. Since

10The prefix nb stands for numeric and Booleans.
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values and numeric values do not have a proper type but characterize a subset
of terms, we must add assumptions to declare the nature of these variables:

inductive is-numeric-value-NB :: nbterm ⇒ bool where
is-numeric-value-NB NBZero |
is-numeric-value-NB nv =⇒ is-numeric-value-NB (NBSucc nv)

inductive is-value-NB :: nbterm ⇒ bool where
is-value-NB NBTrue |
is-value-NB NBFalse |
is-numeric-value-NB nv =⇒ is-value-NB nv

The single-step evaluation relation is a superset of the one defined for Booleans:

inductive eval1-NB :: nbterm ⇒ nbterm ⇒ bool where
— Rules relating to the evaluation of Booleans
eval1-NBIf-NBTrue:
eval1-NB (NBIf NBTrue t2 t3 ) t2 |

eval1-NBIf-NBFalse:
eval1-NB (NBIf NBFalse t2 t3 ) t3 |

eval1-NBIf :
eval1-NB t1 t1 ′ =⇒ eval1-NB (NBIf t1 t2 t3 ) (NBIf t1 ′ t2 t3 ) |

— Rules relating to the evaluation of natural numbers
eval1-NBSucc:
eval1-NB t t ′ =⇒ eval1-NB (NBSucc t) (NBSucc t ′) |

eval1-NBPred-NBZero:
eval1-NB (NBPred NBZero) NBZero |

eval1-NBPred-NBSucc:
is-numeric-value-NB nv =⇒ eval1-NB (NBPred (NBSucc nv)) nv |

eval1-NBPred :
eval1-NB t t ′ =⇒ eval1-NB (NBPred t) (NBPred t ′) |

— Rules relating to the evaluation of the test for equality with zero
eval1-NBIs-zero-NBZero:
eval1-NB (NBIs-zero NBZero) NBTrue |

eval1-NBIs-zero-NBSucc:
is-numeric-value-NB nv =⇒ eval1-NB (NBIs-zero (NBSucc nv)) NBFalse |

eval1-NBIs-zero:
eval1-NB t t ′ =⇒ eval1-NB (NBIs-zero t) (NBIs-zero t ′)

The multi-step evaluation relation and the definition of normal form are
perfectly analogous to these for Booleans:
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inductive eval-NB :: nbterm ⇒ nbterm ⇒ bool where
eval-NB-base:
eval-NB t t |

eval-NB-step:
eval1-NB t t ′ =⇒ eval-NB t ′ t ′′ =⇒ eval-NB t t ′′

definition is-normal-form-NB :: nbterm ⇒ bool where
is-normal-form-NB t ←→ (∀ t ′. ¬ eval1-NB t t ′)

The reason is that all the actual work is performed by the single-step evalu-
ation relation.
In the book, the section covering this fully fledged arithmetic expression
language is mainly an explanation of the constructions not present in the
Boolean expression language and does not contains any proper theorems.
Nevertheless, we revisit the properties introduced for the language of Booleans
and either prove that they are still theorems or disprove them.

The determinacy of the single-step evaluation still holds:

theorem eval1-NB-determinacy :
eval1-NB t t ′ =⇒ eval1-NB t t ′′ =⇒ t ′ = t ′′

proof (induction t t ′ arbitrary : t ′′ rule: eval1-NB .induct)
case (eval1-NBIf t1 t1 ′ t2 t3 )
from eval1-NBIf .prems eval1-NBIf .hyps show ?case
by (auto intro: eval1-NB .cases dest : eval1-NBIf .IH )

next
case (eval1-NBSucc t1 t2 )
from eval1-NBSucc.prems eval1-NBSucc.IH show ?case
by (auto elim: eval1-NB .cases)

next
case (eval1-NBPred-NBSucc nv1 )
from eval1-NBPred-NBSucc.prems eval1-NBPred-NBSucc.hyps show ?case
by (cases rule: eval1-NB .cases)

(auto
intro: is-numeric-value-NB .intros
elim: not-eval-once-numeric-value[rotated ])

next
case (eval1-NBPred t1 t2 )
from eval1-NBPred .hyps eval1-NBPred .prems show ?case
by (auto
intro: eval1-NBPred .IH is-numeric-value-NB .intros
elim: eval1-NB .cases
dest : not-eval-once-numeric-value)

next
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case (eval1-NBIs-zero-NBSucc nv)
thus ?case by (auto
intro: eval1-NB .cases not-eval-once-numeric-value is-numeric-value-NB .intros)

next
case (eval1-NBIs-zero t1 t2 )
from eval1-NBIs-zero.prems eval1-NBIs-zero.hyps show ?case
by (cases rule: eval1-NB .cases) (auto
elim: eval1-NB .cases
intro: eval1-NBIs-zero.IH is-numeric-value-NB .intros
elim: not-eval-once-numeric-value[rotated ])

qed (auto elim: eval1-NB .cases)

Every value is in normal form:

theorem value-imp-normal-form-NB :
is-value-NB t =⇒ is-normal-form-NB t

by (auto
intro: not-eval-once-numeric-value
elim: eval1-NB .cases is-value-NB .cases
simp: is-normal-form-NB-def )

But, unlike for Boolean expressions, some terms that are in normal form are
not values. An example of such term is NBSucc NBTrue.

theorem not-normal-form-imp-value-NB :
∃ t . is-normal-form-NB t ∧ ¬ is-value-NB t (is ∃ t . ?P t)

proof
have a: is-normal-form-NB (NBSucc NBTrue)
by (auto elim: eval1-NB .cases simp: is-normal-form-NB-def )

have b: ¬ is-value-NB (NBSucc NBTrue)
by (auto elim: is-numeric-value-NB .cases simp: is-value-NB .simps)

from a b show ?P (NBSucc NBTrue) by simp
qed

The uniqueness of normal form still holds:

corollary uniqueness-of-normal-form-NB :
eval-NB t u =⇒ eval-NB t u ′ =⇒ is-normal-form-NB u =⇒ is-normal-form-NB

u ′ =⇒ u = u ′

proof (induction t u arbitrary : u ′ rule: eval-NB .induct)
case (eval-NB-base t)
thus ?case by (auto elim: eval-NB .cases simp: is-normal-form-NB-def )

next
case (eval-NB-step t1 t2 t3 )
thus ?case by (metis eval-NB .cases is-normal-form-NB-def eval1-NB-determinacy)
qed
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So does the termination of the evaluation function:

theorem eval-NB-always-terminate:
∃ t ′. eval-NB t t ′ ∧ is-normal-form-NB t ′

proof (induction rule: measure-induct-rule[of size-NB ])
case (less t)
show ?case
apply (cases is-normal-form-NB t)
apply (auto intro: eval-NB-base)
using eval-NB-step eval-once-size-NB is-normal-form-NB-def less.IH
by blast

qed

5 Nameless Representation of Terms

In the background section on λ-calculus (Section 2.1), we presented the prob-
lem of name clashes that can arise when performing β-reduction. In its def-
initions and proofs, the book only works up to α-equivalence: assuming that
the variables would be implicitly renamed if such a name clash occurred. In
a separate chapter, a different representation of terms that avoids such prob-
lem is presented. It is described as one possible encoding that can be used
when implementing an compiler for the λ-calculus.
Even though we are not building a compiler, our computer-verified formal-
ization requires us to explicitly handle this problem. We chose to use this
representation and, thus must also formalize this chapter.
The idea behind this representation, known as de Bruijn indices, is to make
variables reference directly their corresponding binder, rather than referring
to them by name. This is accomplished by using an index that count the
number of enclosing λ-abstractions between a variable and its binder. Fol-
lowing is an example of de Bruijn indices representation for the function
composition combinator:

λf. λg. λx. f (g x) ≡ λ λ λ 2 (1 0)

This representation releases us from having to consider the case of variable
name clashes at the expense of being harder to read and having to main-
tain the correct indices when adding and removing λ-abstractions. Using
this representation, we define the syntax of the untyped lambda calculus as
follow:11

11The prefix ul stands for untyped lambda-calculus.
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datatype ulterm =
ULVar nat |
ULAbs ulterm |
ULApp ulterm ulterm

Using this syntax, the same example of the function composition combinator
looks like this:

ULAbs (ULAbs (ULAbs (ULApp (ULVar 2 ) (ULApp (ULVar 1 ) (ULVar 0 )))))

We define a shift function serving to increase or decrease, by a fix amount d,
all indices larger than c in a term:

primrec shift-UL :: int ⇒ nat ⇒ ulterm ⇒ ulterm where
shift-UL d c (ULVar k) = ULVar (if k < c then k else nat (int k + d)) |
shift-UL d c (ULAbs t) = ULAbs (shift-UL d (Suc c) t) |
shift-UL d c (ULApp t1 t2 ) = ULApp (shift-UL d c t1 ) (shift-UL d c t2 )

In this definition, there is a possible information loss. The variables use
a natural number as index but the function allows to shift both up and
down, thus the use of an integer for the shift increment. When a variable
is encountered, we first convert the index from natural number to integer,
which is always safe, perform the integer addition, which correspond to a
subtraction if d is negative, and convert the result back to natural numbers
to serve as the new index. This last operation converts negative numbers to
zero. We know that this loss of information is safe, since it makes no sense
to speak of negative indices. Our shift-UL function thus has an implicit
assumption that it should not be called with a negative number larger than
the smallest free variable in the term. Following is an example of shifting up
every free variable by 2:

lemma shift-UL 2 0
(ULAbs (ULAbs (ULApp (ULVar 1 ) (ULApp (ULVar 0 ) (ULVar 2 ))))) =
ULAbs (ULAbs (ULApp (ULVar 1 ) (ULApp (ULVar 0 ) (ULVar 4 ))))
by simp

On a first reading, the previous example may seems broken: the variables
ULVar 0 and ULVar 1 are not incremented. This is because the shift function
operates on free variables, i.e. variables whose index refers to a non-existing
λ-abstraction. Since the binding referred by ULVar 1 is in the term, it is not
a free variable: it is bound.

We now define a substitution function that replaces every free variable with
index j by the term s :
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primrec subst-UL :: nat ⇒ ulterm ⇒ ulterm ⇒ ulterm where
subst-UL j s (ULVar k) = (if k = j then s else ULVar k) |
subst-UL j s (ULAbs t) = ULAbs (subst-UL (Suc j ) (shift-UL 1 0 s) t) |
subst-UL j s (ULApp t1 t2 ) = ULApp (subst-UL j s t1 ) (subst-UL j s t2 )

Here is an example of substituting the variable 0 by the variable 1:

lemma subst-UL 0 (ULVar 1 )
(ULApp (ULVar 0 ) (ULAbs (ULAbs (ULVar 2 )))) =
ULApp (ULVar 1 ) (ULAbs (ULAbs (ULVar 3 )))
by simp

Note that the indices are relative to their position in the term. This is why
ULVar 2 is also substituted in the previous example: counting the number
of enclosing λ-abstractions shows us that this variable is, indeed, the same
as ULVar 0 outside the λ-abstractions. Of course, we must maintain this
invariant by incrementing variables in our substituting term accordingly.

6 Untyped Lambda-Calculus

The untyped lambda calculus is the first core calculus we formalize. It im-
ports the theory on the nameless representation of terms (Section 5), which
formalizes the representation used for the syntax of the language. We com-
plete the definitions, by providing the semantics, and we prove the determi-
nacy of evaluation, the relation between values and normal form, the unique-
ness of normal form and the potentially non-terminating nature of evaluation.

6.1 Definitions

In the pure λ-calculus, only function abstractions are considered values:

inductive is-value-UL :: ulterm ⇒ bool where
is-value-UL (ULAbs t)

Variables are not part of this definition because they are a way to refer to
a specific λ-abstraction. Since abstractions are themselves values, we do not
need to consider their bound variables. The only ones we could consider
as values are the free variables, i.e. variables referring to non-existing λ-
abstractions. In the following examples, every occurrence of w is free:

w (λx. x) w (λx.λy.λz. w x y z)
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There is no consensus on how the semantics should handle such situations.
By excluding them from the set of values, the semantics described in the
book defines that such terms are meaningless. This decision is consistent
with many programming languages where the use of an undefined identifier
leads to an error, either at compile-time or at run-time.
The single-step evaluation relation is defined, in the book, with the following
inference rules where [x 7→ s] t is the replacement of variable x by s in t:

t1 =⇒ t′1
t1 t2 =⇒ t′1 t2

(1)

t2 =⇒ t′2
v1 t2 =⇒ v1 t

′
2

(2)

(λx. t12) v2 =⇒ [x 7→ v2] t12 (3)

The first rule states that the left side of an application must be reduced first,
the second rule states that the right side of an application must be reduced
second and the third rule states that an application consists of replacing both
the λ-abstraction and the argument by the λ-abstraction’s body where the
substitution has been performed. We translate these rules with the following
inductive definition:
inductive eval1-UL :: ulterm ⇒ ulterm ⇒ bool where
eval1-ULApp1 :
eval1-UL t1 t1 ′ =⇒ eval1-UL (ULApp t1 t2 ) (ULApp t1 ′ t2 ) |

eval1-ULApp2 :
is-value-UL v1 =⇒ eval1-UL t2 t2 ′ =⇒ eval1-UL (ULApp v1 t2 )

(ULApp v1 t2 ′) |
eval1-ULApp-ULAbs:
is-value-UL v2 =⇒ eval1-UL (ULApp (ULAbs t12 ) v2 )

(shift-UL (−1 ) 0 (subst-UL 0 (shift-UL 1 0 v2 ) t12 ))

Apart from the explicit assumption on the nature of v1, the only difference
is the substitution in the third rule. This is the reason that motivated us to
formalize the nameless representation of terms in the first place. The book
uses a high level definition of substitution where name clashes are not con-
sidered. We replace this higher level operation by our concrete substitution
operation on de Bruijn indices. We begin by shifting up by on the concrete
argument because, conceptually, it enters the function abstraction. We then
perform the proper substitution of the function’s variable, i.e. of index zero.
Finally, we shift down every variable of the resulting body to account for the
removed λ-abstraction.
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The multi-step evaluation relation and the normal form definitions follow the
usual pattern:

inductive eval-UL :: ulterm ⇒ ulterm ⇒ bool where
eval-UL-base:
eval-UL t t |

eval-UL-step:
eval1-UL t t ′ =⇒ eval-UL t ′ t ′′ =⇒ eval-UL t t ′′

definition is-normal-form-UL :: ulterm ⇒ bool where
is-normal-form-UL t ←→ (∀ t ′. ¬ eval1-UL t t ′)

6.2 Theorems

In the book, this chapter consists mainly of the presentation of the λ-calculus,
of which we gave a short introduction in the background section (Section 2.1),
and does not contains meaningful theorems. Nevertheless, we revisit the
properties introduced with the arithmetic expressions language (Section 4)
and either prove that they are still theorems or disprove them.

The determinacy of the single-step evaluation still holds:

theorem eval1-UL-determinacy :
eval1-UL t t ′ =⇒ eval1-UL t t ′′ =⇒ t ′ = t ′′

proof (induction t t ′ arbitrary : t ′′ rule: eval1-UL.induct)
case (eval1-ULApp1 t1 t1 ′ t2 )
from eval1-ULApp1 .hyps eval1-ULApp1 .prems show ?case
by (auto elim: eval1-UL.cases is-value-UL.cases intro: eval1-ULApp1 .IH )

next
case (eval1-ULApp2 t1 t2 t2 ′)
from eval1-ULApp2 .hyps eval1-ULApp2 .prems show ?case
by (auto elim: eval1-UL.cases is-value-UL.cases intro: eval1-ULApp2 .IH )

next
case (eval1-ULApp-ULAbs v2 t12 )
thus ?case by (auto elim: eval1-UL.cases simp: is-value-UL.simps)

qed

Every value is in normal form:

theorem value-imp-normal-form:
is-value-UL t =⇒ is-normal-form-UL t

by (auto elim: is-value-UL.cases eval1-UL.cases simp: is-normal-form-UL-def )

Meanwhile, the converse of the preceding theorem is not true since variables
are in normal form but are not values:
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theorem normal-form-does-not-imp-value:
∃ t . is-normal-form-UL t ∧ ¬ is-value-UL t (is ∃ t . ?P t)

proof
have a:

∧
n. is-normal-form-UL (ULVar n)

by (auto simp: is-normal-form-UL-def elim: eval1-UL.cases)
have b:

∧
n. ¬ is-value-UL (ULVar n)

by (auto simp: is-normal-form-UL-def elim: is-value-UL.cases)
from a b show

∧
n. ?P (ULVar n) by simp

qed

The uniqueness of normal form still holds:

corollary uniqueness-of-normal-form:
eval-UL t u =⇒ eval-UL t u ′ =⇒ is-normal-form-UL u =⇒ is-normal-form-UL

u ′ =⇒ u = u ′

by (induction t u rule: eval-UL.induct)
(metis eval-UL.cases is-normal-form-UL-def eval1-UL-determinacy)+

This time, the evaluation relation could be non-terminating. A typical ex-
ample of term whose evaluation does not terminate is the self-application
combinator (ω ≡ λx. x x) applied to itself, resulting in a term called Ω:

definition ω :: ulterm where
ω ≡ ULAbs (ULApp (ULVar 0 ) (ULVar 0 ))

definition Ω :: ulterm where
Ω ≡ ULApp ω ω

A single step of evaluation will result in the same term:

lemma eval1-UL-Ω:
eval1-UL Ω t =⇒ Ω = t

by (induction Ω t rule: eval1-UL.induct)
(auto elim: eval1-UL-ULAbsD simp: ω-def Ω-def )

Since the single-step evaluation is equivalent to the identity, the multi-step
evaluation relation will loop infinitely (e.g. Ω→ Ω→ . . . ):

lemma eval-UL-Ω:
eval-UL Ω t =⇒ Ω = t

by (induction Ω t rule: eval-UL.induct) (blast dest : eval1-UL-Ω)+

lemma
eval-UL Ω Ω

by (rule eval-UL.intros)
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Based on this simple example, we can show that there exists some terms
which cannot be reduce to a normal form:

theorem eval-does-not-always-terminate:
∃ t . ∀ t ′. eval-UL t t ′ −→ ¬ is-normal-form-UL t ′ (is ∃ t . ∀ t ′. ?P t t ′)

proof
show ∀ t ′. ?P Ω t ′

by (auto dest !: eval-UL-Ω)
(auto
intro: eval1-UL.intros is-value-UL.intros
simp: ω-def Ω-def is-normal-form-UL-def )

qed

7 Typed Arithmetic Expressions

In this section, we revisit the previously formalized arithmetic expression
language (Section 4) and augment it with static types. Since types are a
characterization external to the definition of terms, we import the theory
to reuse its definitions and theorems. We complete the definitions with the
typing relation and prove type safety through the progress and preservation
theorems.

7.1 Definitions

The language of arithmetic expressions contains two types for Booleans and
natural numbers, which we model using a datatype:

datatype nbtype = Bool | Nat

The typing relation serves to assign a type to an expression. It is character-
ized by the following inference rules:

true : Bool (1)

false : Bool (2)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(3)

0 : Nat (4)
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t1 : Nat
succ t1 : Nat

(5)

t1 : Nat
pred t1 : Nat

(6)

t1 : Nat
iszero t1 : Bool

(7)

The first, second and fourth rules give the type of constants. The third rule
requires that both branches of a conditional have the same type and that the
condition is a Boolean. The fifth and sixth rules state that the successor and
predecessor of natural numbers are natural numbers themselves. Finally, the
seventh rule state that the test of equality with zero requires a natural number
and leads a Boolean. We translate these rules in an inductive definition, for
which we also provide the |:| operator as a more conventional notation:
inductive has-type :: nbterm ⇒ nbtype ⇒ bool (infix |:| 150 ) where
— Rules relating to the type of Booleans
has-type-NBTrue:
NBTrue |:| Bool |

has-type-NBFalse:
NBFalse |:| Bool |

has-type-NBIf :
t1 |:| Bool =⇒ t2 |:| T =⇒ t3 |:| T =⇒ NBIf t1 t2 t3 |:| T |

— Rules relating to the type of natural numbers
has-type-NBZero:
NBZero |:| Nat |

has-type-NBSucc:
t |:| Nat =⇒ NBSucc t |:| Nat |

has-type-NBPred :
t |:| Nat =⇒ NBPred t |:| Nat |

has-type-NBIs-zero:
t |:| Nat =⇒ NBIs-zero t |:| Bool

The inversion of the typing relation gives us information on types for specific
terms:
lemma inversion-of-typing-relation:
NBTrue |:| R =⇒ R = Bool
NBFalse |:| R =⇒ R = Bool
NBIf t1 t2 t3 |:| R =⇒ t1 |:| Bool ∧ t2 |:| R ∧ t3 |:| R
NBZero |:| R =⇒ R = Nat
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NBSucc t |:| R =⇒ R = Nat ∧ t |:| Nat
NBPred t |:| R =⇒ R = Nat ∧ t |:| Nat
NBIs-zero t |:| R =⇒ R = Bool ∧ t |:| Nat

by (auto elim: has-type.cases)

In the typed arithmetic language, every term t has at most one type. That
is, if t is typable, then its type is unique:

theorem uniqueness-of-types:
t |:| T =⇒ t |:| T ′ =⇒ T = T ′

by (induction t T rule: has-type.induct) (auto dest : inversion-of-typing-relation)

7.2 Safety = Progress + Preservation

The most basic property a type system must provide is safety, also called
soundness : the evaluation of a well-typed term will not reach a state whose
semantics is undefined. Since our operational semantics is based the of the
evaluation relation and the value predicate, every term that does not fit in
one or the other has no defined semantics.
An example of an undefined state is NBSucc NBTrue: there is no further
evaluation step possible but it is not a value neither. In our current language,
there is nothing we can do with this term.

Another usefull lemma is the canonical form of values which, for well typed
terms, give us information on the nature of the terms:

lemma canonical-form:
is-value-NB v =⇒ v |:| Bool =⇒ v = NBTrue ∨ v = NBFalse
is-value-NB v =⇒ v |:| Nat =⇒ is-numeric-value-NB v

by (auto elim: has-type.cases is-value-NB .cases is-numeric-value-NB .cases)

The safety of a type system can be shown in two step: progress and preser-
vation. Progress means that a well-typed term is not stuck, i.e. either it is a
value or it can take a step according to the evaluation rules.

theorem progress:
t |:| T =⇒ is-value-NB t ∨ (∃ t ′. eval1-NB t t ′)

proof (induction t T rule: has-type.induct)
case (has-type-NBPred t)
thus ?case
by (auto intro: eval1-NB .intros is-numeric-value-NB .cases dest : canonical-form)

next
case (has-type-NBIs-zero t)
thus ?case
by (auto intro: eval1-NB .intros is-numeric-value-NB .cases dest : canonical-form)
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qed (auto
intro: eval1-NB .intros is-value-NB .intros is-numeric-value-NB .intros
dest : canonical-form)

Preservation means that if a well-typed term takes a step of evaluation, then
the resulting term is also well-typed.

theorem preservation: t |:| T =⇒ eval1-NB t t ′ =⇒ t ′ |:| T
proof (induction t T arbitrary : t ′ rule: has-type.induct)
case (has-type-NBIf t1 t2 T t3 )
from has-type-NBIf .prems has-type-NBIf .IH has-type-NBIf .hyps show ?case
by (auto intro: has-type.intros elim: eval1-NB .cases)

qed (auto
intro: has-type.intros
dest : inversion-of-typing-relation
elim: eval1-NB .cases)

8 Typed Lambda Calculus

We now revisit the λ-calculus (Section 6) and augment it with static types.
Unlike the typed arithmetic expressions language, types are an integral part
of the language and its syntax. For this reason, we cannot import the theory
of the untyped variant and build on top of it, but need to provide new,
although similar, definitions. We will prove type safety through the progress
and preservation theorems before showing that types can be safely erased
while preserving the semantics of the language.

8.1 Definitions

In the untyped lambda-calculus, everything is a function. Thus, we need
to provide the type of functions, usually written a → b which, given an
argument of type a, will evaluate to a value of type b. Since both a and b
must be valid types, we need to provide a base case to stop the recursion at
some point. To keep the language minimal, we only add the Boolean type as
a base case:12

datatype-new ltype =
Bool |
Fun (domain: ltype) (codomain: ltype) (infixr → 225 )

12The prefix l stands for lambda-calculus.
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In the previous definition,→ is a type constructor which can be use to create
function types for some concrete domain and codomain. Examples of such
types include the following:13

Bool → Bool (1)
(Bool → Bool) → Bool (2)

(Bool → Bool) → (Bool → Bool) (3)
(Bool → Bool) → Bool → Bool (4)

Programming languages usually have more than our base type. Examples
include integers, floating point numbers, characters, arrays, etc.
Since variables can now range over infinitely many types, we need a way
to know which type a function requires as domain. There are two possible
strategies: we can annotate the λ-abstractions with the intended type of their
arguments, or else we can analyze the body of the abstraction to infer the
required type. TAPL chose the former strategy.
The syntax of this language differs from the pure λ-calculus by having con-
structions for Boolean expressions and a type annotation on function ab-
stractions:

datatype-new lterm =
LTrue |
LFalse |
LIf (bool-expr : lterm) (then-expr : lterm) (else-expr : lterm) |
LVar nat |
LAbs (arg-type: ltype) (body : lterm) |
LApp lterm lterm

We define the shift and substitution functions for this extended language:

primrec shift-L :: int ⇒ nat ⇒ lterm ⇒ lterm where
shift-L d c LTrue = LTrue |
shift-L d c LFalse = LFalse |
shift-L d c (LIf t1 t2 t3 ) = LIf (shift-L d c t1 ) (shift-L d c t2 ) (shift-L d c t3 ) |
shift-L d c (LVar k) = LVar (if k < c then k else nat (int k + d)) |
shift-L d c (LAbs T t) = LAbs T (shift-L d (Suc c) t) |
shift-L d c (LApp t1 t2 ) = LApp (shift-L d c t1 ) (shift-L d c t2 )

primrec subst-L :: nat ⇒ lterm ⇒ lterm ⇒ lterm where
subst-L j s LTrue = LTrue |
subst-L j s LFalse = LFalse |
13Note that the last two examples are equivalent, since the → operator is right-

associative.
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subst-L j s (LIf t1 t2 t3 ) = LIf (subst-L j s t1 ) (subst-L j s t2 ) (subst-L j s t3 ) |
subst-L j s (LVar k) = (if k = j then s else LVar k) |
subst-L j s (LAbs T t) = LAbs T (subst-L (Suc j ) (shift-L 1 0 s) t) |
subst-L j s (LApp t1 t2 ) = LApp (subst-L j s t1 ) (subst-L j s t2 )

The semantics is similar to the pure λ-calculus. A first difference is that the
set of values also contain the Boolean constants:

inductive is-value-L :: lterm ⇒ bool where
is-value-L LTrue |
is-value-L LFalse |
is-value-L (LAbs T t)

A second difference is that the single-step evaluation relation also contains
the rules for the evaluation of the conditional statement:

inductive eval1-L :: lterm ⇒ lterm ⇒ bool where
— Rules relating to the evaluation of Booleans
eval1-LIf-LTrue:
eval1-L (LIf LTrue t2 t3 ) t2 |

eval1-LIf-LFalse:
eval1-L (LIf LFalse t2 t3 ) t3 |

eval1-LIf :
eval1-L t1 t1 ′ =⇒ eval1-L (LIf t1 t2 t3 ) (LIf t1 ′ t2 t3 ) |

— Rules relating to the evaluation of function application
eval1-LApp1 :
eval1-L t1 t1 ′ =⇒ eval1-L (LApp t1 t2 ) (LApp t1 ′ t2 ) |

eval1-LApp2 :
is-value-L v1 =⇒ eval1-L t2 t2 ′ =⇒ eval1-L (LApp v1 t2 ) (LApp v1 t2 ′) |

eval1-LApp-LAbs:
is-value-L v2 =⇒ eval1-L (LApp (LAbs T t12 ) v2 )

(shift-L (−1 ) 0 (subst-L 0 (shift-L 1 0 v2 ) t12 ))

When type checking the body of a function abstraction, we assume that
the given function argument does have the type annotated. Since the body
could itself be a function abstraction, we need to keep track of this set of
typing assumptions, also known as a typing context. Since the book considers
variables to be a named reference to a λ-abstraction, its typing context is a set
of identifier–type pairs. Our use of de Bruijn indices requires us to consider
an alternative representation. We define a context to be a list of types whose
nth position contains the type of the nth free variale:

type-synonym lcontext = ltype list
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To keep the notation similar to the book, we define some synonyms for the
list operations that mimic their set counterpart:

notation Nil (∅)
abbreviation cons :: lcontext ⇒ ltype ⇒ lcontext (infixl |,| 200 ) where
cons Γ T ≡ T # Γ

abbreviation elem ′ :: (nat × ltype) ⇒ lcontext ⇒ bool (infix |∈| 200 ) where
elem ′ p Γ ≡ fst p < length Γ ∧ snd p = nth Γ (fst p)

With the concept of typing concept, the syntax used for the typing relation
needs to be extended:

Γ ` t : T

This syntax can be read as “under the context Γ, the term t have type T .
We now define the typing relation by translating the induction rules present
in the book to an inductive definition:

inductive has-type-L :: lcontext ⇒ lterm ⇒ ltype ⇒ bool (((-)/ ` (-)/ |:| (-)) [150 ,
150 , 150 ] 150 ) where
— Rules relating to the type of Booleans
has-type-LTrue:

Γ ` LTrue |:| Bool |
has-type-LFalse:

Γ ` LFalse |:| Bool |
has-type-LIf :

Γ ` t1 |:| Bool =⇒ Γ ` t2 |:| T =⇒ Γ ` t3 |:| T =⇒ Γ ` (LIf t1 t2 t3 ) |:| T |

— Rules relating to the type of the constructs of the λ-calculus
has-type-LVar :

(x , T ) |∈| Γ =⇒ Γ ` (LVar x ) |:| T |
has-type-LAbs:

(Γ |,| T1 ) ` t2 |:| T2 =⇒ Γ ` (LAbs T1 t2 ) |:| (T1 → T2 ) |
has-type-LApp:

Γ ` t1 |:| (T11 → T12 ) =⇒ Γ ` t2 |:| T11 =⇒ Γ ` (LApp t1 t2 ) |:| T12

The rules for Booleans are the same as in section 7. The rule has-type-LVar
states that the type of a variable must be in the typing context. The rule
has-type-LAbs states that the type of an λ-abstraction depends on the type
of both its argument and body. Finally, the rule has-type-LApp states that
the type of a function application is the codomain of the function. As an
example of a usage of the typing relation, consider the type of the application
of LTrue to the Boolean identity function:

lemma ∅ ` (LApp (LAbs Bool (LVar 0 )) LTrue) |:| Bool
by (auto intro!: has-type-L.intros)
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A more interesting example, assuming there is one variable of type Bool →
Bool in the typing context, is the type of applying a Boolean expression to
this variable:

lemma
assumes Γ = ∅ |,| (Bool → Bool)
shows Γ ` LApp (LVar 0 ) (LIf LFalse LTrue LFalse) |:| Bool

by (auto intro!: has-type-L.intros simp: assms)

8.2 Properties of Typing

The inversion of typing relation, which gives us information on types for
specific terms, will be a useful lemma in the following theorems:

lemma inversion:
Γ ` LTrue |:| R =⇒ R = Bool
Γ ` LFalse |:| R =⇒ R = Bool
Γ ` LIf t1 t2 t3 |:| R =⇒ Γ ` t1 |:| Bool ∧ Γ ` t2 |:| R ∧ Γ ` t3 |:| R
Γ ` LVar x |:| R =⇒ (x , R) |∈| Γ
Γ ` LAbs T1 t2 |:| R =⇒ ∃R2 . R = T1 → R2 ∧ Γ |,| T1 ` t2 |:| R2
Γ ` LApp t1 t2 |:| R =⇒ ∃T11 . Γ ` t1 |:| T11 → R ∧ Γ ` t2 |:| T11
by (auto elim: has-type-L.cases)

Every term has at most one type:

theorem uniqueness-of-types:
Γ ` t |:| T1 =⇒ Γ ` t |:| T2 =⇒ T1 = T2

by (induction Γ t T1 arbitrary : T2 rule: has-type-L.induct)
(metis prod .sel ltype.sel inversion)+

The canonical form of values, which gives us information on terms for well-
typed values, will also be useful later:

lemma canonical-forms:
is-value-L v =⇒ Γ ` v |:| Bool =⇒ v = LTrue ∨ v = LFalse
is-value-L v =⇒ Γ ` v |:| T1 → T2 =⇒ ∃ t . v = LAbs T1 t

by (auto elim: has-type-L.cases is-value-L.cases)

To formalize the concept of free variables (i.e. variables referring to a non
existing λ-abstraction), we provide a function that return the set of free
variables of a term:

primrec FV :: lterm ⇒ nat set where
FV LTrue = {} |
FV LFalse = {} |
FV (LIf t1 t2 t3 ) = FV t1 ∪ FV t2 ∪ FV t3 |
FV (LVar x ) = {x} |
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FV (LAbs T t) = image (λx . x − 1 ) (FV t − {0}) |
FV (LApp t1 t2 ) = FV t1 ∪ FV t2

Based on the FV function, we can now define a closed term to be a term
whose set of free-variables is empty:

definition is-closed :: lterm ⇒ bool where
is-closed t ≡ FV t = {}

We now prove the progress theorem (i.e. a well-typed closed term is either a
value or can take a step according to the evaluation rules):

theorem progress:
∅ ` t |:| T =⇒ is-closed t =⇒ is-value-L t ∨ (∃ t ′. eval1-L t t ′)

proof (induction t T rule: has-type-L.induct)
case (has-type-LIf Γ t1 t2 T t3 )
thus ?case by (cases is-value-L t1 )

(auto intro: eval1-L.intros dest : canonical-forms simp: is-closed-def )
next
case (has-type-LApp Γ t1 T11 T12 t2 )
thus ?case by (cases is-value-L t1 , cases is-value-L t2 )

(auto intro: eval1-L.intros dest : canonical-forms simp: is-closed-def )
qed (simp-all add : is-value-L.intros is-closed-def )

Proving the preservation theorem requires us to first prove a number of helper
lemmas. For these, our reliance on "de Bruijn indices" forces us to depart
substantially from the book.
The first lemma the book considers is the permutation of the typing context:

If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T .
Moreover, the latter derivation has the same depth as the former.

Translated naively, this lemma does not hold with our representation of the
typing context as an ordered. Instead, we will prove an other lemma which
states that it is safe to remove a variable from the context if it is not referenced
in the considered term:

lemma shift-down:
insert-nth n U Γ ` t |:| T =⇒ n ≤ length Γ =⇒
(
∧
x . x ∈ FV t =⇒ x 6= n) =⇒ Γ ` shift-L (− 1 ) n t |:| T

proof (induction insert-nth n U Γ t T arbitrary : Γ n rule: has-type-L.induct)
case (has-type-LAbs V t T )
from this(1 ,3 ,4 ) show ?case
by (fastforce intro: has-type-L.intros has-type-LAbs.hyps(2 )[where n=Suc n])+

qed (fastforce intro: has-type-L.intros simp: nth-append min-def )+
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This lemma was the most challenging to express and prove. It was difficult to
define the correct set of assumptions and, prior to simplifications, the proof
was quite imposing.
The book then consider the weakening the typing context:

If Γ ` t : T and x /∈ dom(Γ), then Γ, x : S ` t : T . Moreover, the
latter derivation has the same depth as the former.

This lemma does hold with our representation of the typing context, but we
need to express it in terms of list by inserting the type S at a fixed position
n. Moreover, we need to shift up every variable referring to a λ-abstraction
further in the context than n.

lemma weakening :
Γ ` t |:| T =⇒ n ≤ length Γ =⇒ insert-nth n S Γ ` shift-L 1 n t |:| T

proof (induction Γ t T arbitrary : n rule: has-type-L.induct)
case (has-type-LAbs Γ T1 t2 T2 )
from has-type-LAbs.prems has-type-LAbs.hyps
has-type-LAbs.IH [where n=Suc n] show ?case
by (auto intro: has-type-L.intros)

qed (auto simp: nth-append min-def intro: has-type-L.intros)

This specific formulation was difficult to come with but the proof is, after
simplifications, fairly short. It is a typical situation in interactive theorem
proving that the result seems simple and does not make justice to the effort.
It can be considered an achievement to reduce a huge and unreadable proof
to a small and readable one.

The book then considers, as its last helper lemma, the preservation of types
under substitution:

If Γ, x : S ` t : T and Γ ` s : S, then Γ ` [x 7→ s] : T .

We prove a slightly different theorem that is more suitable for the coming
proofs:

lemma substitution:
Γ ` t |:| T =⇒ Γ ` LVar n |:| S =⇒ Γ ` s |:| S =⇒ Γ ` subst-L n s t |:| T

proof (induction Γ t T arbitrary : s n rule: has-type-L.induct)
case (has-type-LAbs Γ T1 t T2 )
thus ?case by (fastforce
intro: has-type-L.intros weakening [where n=0 , unfolded insert-nth-def nat .rec]
dest : inversion(4 ))

qed (auto intro!: has-type-L.intros dest : inversion(4 ))
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We must provide a some more lemmas to define how the FV function behaves
with respect to the shift-L and subst-L functions:
lemma FV-shift :
FV (shift-L (int d) c t) = image (λx . if x ≥ c then x + d else x ) (FV t)

proof (induction t arbitrary : c rule: lterm.induct)
case (LAbs T t)
thus ?case by (auto simp: gr-Suc-conv image-iff ) force+

qed auto

lemma FV-subst :
FV (subst-L n t u) = (if n ∈ FV u then (FV u − {n}) ∪ FV t else FV u)

proof (induction u arbitrary : n t rule: lterm.induct)
case (LAbs T u)
thus ?case
apply (auto simp: gr0-conv-Suc image-iff FV-shift [of 1 , unfolded int-1 ])
by (metis DiffI One-nat-def UnCI diff-Suc-1 empty-iff imageI insert-iff nat .distinct(1 ))+

qed (auto simp: gr0-conv-Suc image-iff FV-shift [of 1 , unfolded int-1 ])

Again, these lemmas are not present in the book. It is usual for paper proofs
to be a little sketchy and rely on readers to imagine fill in the blanks with
some simple lemmas. The need for these arise from the use of the FV function
in the shift-down lemma.
Finally, we can now prove the preservation theorem:
theorem preservation:

Γ ` t |:| T =⇒ eval1-L t t ′ =⇒ Γ ` t ′ |:| T
proof (induction Γ t T arbitrary : t ′ rule: has-type-L.induct)
case (has-type-LIf Γ t1 t2 T t3 )
thus ?case by (auto intro: has-type-L.intros eval1-L.cases[OF has-type-LIf .prems])
next
case (has-type-LApp Γ t1 T11 T12 t2 )
thus ?case by (auto
intro!: has-type-L.intros substitution shift-down
dest !: inversion
dest : weakening [where n=0 , unfolded insert-nth-def nat .rec]
elim!: eval1-LAppE
split : lterm.splits if-splits
simp: FV-subst FV-shift [of 1 , unfolded int-1 ])

(metis neq0-conv)
qed (auto elim: eval1-L.cases)

By proving the progress and the preservation theorems, we have shown that
the typed λ-calculus is type safe, i.e. every well-typed program has a well-
defined semantics.
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8.3 Erasure and Typability

The type system we formalized is completely static (i.e. there is no run-time
checked involving the types of terms). Since the type annotations are not used
during evaluation, it is worth exploring the possibility to erase them prior to
execution. To this end, we define an untyped version of our λ-calculus with
Booleans:14

datatype uterm =
UTrue |
UFalse |
UIf uterm uterm uterm |
UVar nat |
UAbs uterm |
UApp uterm uterm

primrec shift-U :: int ⇒ nat ⇒ uterm ⇒ uterm
primrec subst-U :: nat ⇒ uterm ⇒ uterm ⇒ uterm
inductive is-value-U :: uterm ⇒ bool
inductive eval1-U :: uterm ⇒ uterm ⇒ bool

We now define a morphism which maps every typed term to an equivalent
untyped one:

primrec erase :: lterm ⇒ uterm where
erase LTrue = UTrue |
erase LFalse = UFalse |
erase (LIf t1 t2 t3 ) = (UIf (erase t1 ) (erase t2 ) (erase t3 )) |
erase (LVar x ) = UVar x |
erase (LAbs - t) = UAbs (erase t) |
erase (LApp t1 t2 ) = UApp (erase t1 ) (erase t2 )

We also characterize how the erase function reacts with respect to values and
the shift-L and subst-L functions.

lemma is-value-erasure:
is-value-L t = is-value-U (erase t)

by (induction t rule: lterm.induct) (auto simp: is-value-L.simps is-value-U .simps)

lemma shift-erasure:
erase (shift-L d c t) = shift-U d c (erase t)

by (induction t arbitrary : d c rule: lterm.induct) auto

14The definitions are analogous to their typed counterpart.
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lemma subst-erasure:
erase (subst-L j s t) = subst-U j (erase s) (erase t)

by (induction t arbitrary : j s rule: lterm.induct) (auto simp: shift-erasure)

We can now prove that every evaluation step on a typed term can be per-
formed in parallel on a corresponding untyped term.

theorem
eval1-L t t ′ =⇒ eval1-U (erase t) (erase t ′)
by (induction t t ′ rule: eval1-L.induct)

(auto intro: eval1-U .intros simp: shift-erasure subst-erasure is-value-erasure)

9 Conclusion

In this thesis, we formalized a number of languages presented in Types and
Programming Languages using the Isabelle/HOL interactive theorem prover.
We started with a simple arithmetic language of Booleans and natural num-
bers. We continued with the nameless representation of terms for the λ-
calculus, which we used as a basis for the pure untyped λ-calculus. For those
languages, we proved the determinacy of evaluation, the relation between
values and normal form, the uniqueness of normal form and the termination,
or non-termination, of evaluation.
We then revisited both languages and augmented them with type systems.
We proved the uniqueness of types and the safety of the languages through
the progress and preservation theorems. We also demonstrated that the
addition of types did not changed the semantics of the λ-calculus by proving
that types can be erased without affecting the evaluation of terms.
A formalization can be separated in three main elements: definitions, proper-
ties involving these definitions and computer-checked proofs that these prop-
erties hold. In retrospective, expressing the definitions and properties was
the most important and difficult activity. Once the right abstractions and
the correct formulations for theorems were found, the proofs were usually
fairly simple: a good definition is worth three theorems! Conversely, a wrong
abstraction or hypothesis have led us to theorems very difficult to prove, or
even to properties that ended up not being theorems at all.
In this report, we focused our attention on the definitions and theorems,
highlighting the differences with the book. The complete Isabelle/HOL the-
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ories provided along with this report15 contain more examples, exercises and
less important theorems.
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