
A Generic Framework for Verified Compilers
Using Isabelle/HOL’s Locales
Martin Desharnais and Stefan Brunthaler

National Cyber Defence Research Institut (CODE), UniBw M, Germany
{martin.desharnais, brunthaler}@unibw.de

Abstract

In this paper, we present a prototype version of a generic framework for formalizing compiler transfor-
mations. Our framework leverages Isabelle/HOL’s locales—a module system for generic formalizations—
to abstract over concrete languages and transformations. The framework thus enables us to state com-
mon definitions for language semantics, program behaviours, forward and backward simulations, and
compilers. We provide generic operations, such as compiler composition, and prove general theo-
rems, resulting in reusable proof components. By demonstrating our idea on a concrete example,
we provide evidence of how locales allow reuse and, therefore, enable encapsulation of verification
artefacts into modules.

1 Introduction
The mechanically verified formalization of software components has been the subject of much research
in the last decades. Especially influential were the CompCert [4] and CakeML [3] projects, which
produced realistic compilers from a (large subset of) two real-world programming languages (C99 and
Standard ML) to real hardware platforms. These compilers showed both that mechanized verification is
feasible and that it has a measurable effect on the dependability of the compiler [7].

We can now observe a shift in perspective, where the idea of mechanically verified software components
is becoming a concrete and desirable goal. Formalization projects are increasing in number, but also in
size, complexity, and lifetime. There is an analogy to be made with the emergence, in the second half of
the 20th century, of software engineering to the point that the term proof engineering starts to be used.
New and interesting questions now emerge. How to avoid repetition in definitions and proofs? Which
concepts can be generalized and reused? How to separate a formalization in independent components, so
that multiple people can work in parallel? What should be the interface between such components? How
can tooling make proof engineers more productive? What is a good balance between proof readability
and the time required to (mechanically) verify it? etc.

In the case of compiler verification, we have a very well-understood domain, with well-known termi-
nology, that builds on decades of research and empirical experience. But as is the case for a lot of small
software prototypes, small-scale formalizations constantly redefined similar abstractions and concepts.
This is something we wanted to avoid when we started a small formalization, in Isabelle/HOL [5],
of three small stack-based languages implementing different optimizations. Inspired by the concept of
modularization in software engineering, we separated the general concepts from the language-dependent
parts. We learned about, and made use of, Isabelle’s locales to devise a small generic framework1 for
the verification of program transformations.

1Available on the Archive of Formal Proofs (AFP) [2].

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

2 Background
In this section, we start with brief overview of the operational semantics of programming languages and
follow with a short introduction to Isabelle’s locales.

2.1 Programming Language Semantics
The operational semantics of a programming language can be defined as a transition system representing
the execution of a program written in this language. A language L = 〈S, I, F,→〉 is defined by a set S
of program states, a set I ⊆ S of initial states, a set F ⊆ S of final states, and a transition relation
→ ⊆ S × S. The execution of a program is modelled as a sequence of states s1 → s2 → ... with
s1 ∈ I . An execution is called terminating if there exists a state sn such that s1 → s2 → ... → sn and
@sn+1. sn → sn+1, and non-terminating otherwise. A terminating execution is said to be successful
if sn ∈ F and to go wrong otherwise. These execution behaviours are usually called the program’s
behaviour and written s ⇓ b.

The compiler from a language L1 to L2 is a partial function C : S1 ⇀ S2, which maps a program s ∈ I1
to C(s) ∈ I2.

Two programs s and c are said to be equivalent if they exhibit the same behaviour, i.e. ∀b, s ⇓ b ⇐⇒
c ⇓ b. This can be established using a bisimulation [6]: the conjunction of a backward and a forward
simulation. Consider a binary relation ≈, between program states, expressing that two states are to be
considered equivalent for a given use case. This relation is called a simulation whenever ∀s s′ c, s ≈
c ∧ s → s′ =⇒ ∃c′, s′ ≈ c′ ∧ c → c′. A backward simulation, thus, shows that every behaviour of the
compiled program is also a behaviour of the source program, i.e. the compilation is correct (sound). A
forward simulation shows that every behaviour of the source program can be achieved by the compiled
program, i.e. the compilation is complete.

2.2 Isabelle’s locales
Locales are an Isabelle construct to define parametric theories [1]. They are based on the concept of
proof contexts. A theorem of the form∧

p1 p2 . . . pn. A1 =⇒ A2 =⇒ · · · =⇒ Am =⇒ C

has a set {p1, p2, . . . , pn} of parameters, a set {A1, A2, . . . , Am} of assumptions, and proves a
conclusion C. Taken together, the sets of parameters and assumptions is called the proof context. Locales
enable the user to define a named proof context and reuse it for multiple conclusions, thus avoiding
having to repeat its components in every theorem. Consider for example a formalization of monoids.

locale monoid =
fixes

f :: ′a⇒ ′a⇒ ′a (infix ·) and
e :: ′a

assumes
associativity: x · (y · z) = (x · y) · z and
left-identity: e · x = x and
right-identity: x · e = x

context monoid begin
primrec pow :: nat⇒ ′a⇒ ′a where
pow 0 x = e |
pow (Suc n) x = x · pow n x

lemma pow-add:
pow (n + m) x = pow n x · pow m x
proof . . . qed

end

The monoid locale consists of a sequence of parameters, introduced by the fixes keyword, and a sequence
of assumptions, introduced by the assumes keyword. When working in a locale context—introduced
by the context command or directly following a locale definition—new definitions and theorems can be
derived from the locale parameters, its assumptions, and previous derived terms and theorems.

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

The automatically introduced locale predicate monoid :: (′a⇒ ′a⇒ ′a)⇒ ′a⇒ bool identifies locale
interpretations, i.e. parameters for which the assumptions hold. We can see that locale contexts really
just are syntactic sugar for manual contexts by inspecting the theorem monoid.pow-add from outside
the locale context.

monoid f e =⇒ pow f e (n + m) x = f (pow f e n x) (pow f e m x)

Locales can also be extended by more parameters and assumptions.

locale monoid-homomorphisms =
Mf : monoid f ef + Mg: monoid g eg
for

f :: ′a⇒ ′a⇒ ′a (infix ·) and ef and
g :: ′b⇒ ′b⇒ ′b (infix �) and eg +

fixes map :: ′a⇒ ′b
assumes

map-distributive: map (x · y) = map x � map y and
map-identity: map ef = eg

The monoid-homomorphisms locale extends two instances of monoid, fixes a projection function map
between their underlying types, and states two assumptions on its interaction with the two monoid
structures. The extended locale contexts are named, so that elements can be accessed, e.g. by writing
Mf .left-identity. The sequence of parameters required by the extended locales are introduced by the for
keyword.

Finally, locales can be interpreted, with the interpretation command, by providing values for the pa-
rameters and proving that the assumptions hold.

interpretation monoid-nat-addition: monoid (+) (0 :: nat)
proof — Proof that the assumptions hold qed

Following interpretation, all derived definitions and theorems, specialized for the provided arguments,
are available in the monoid nat addition namespace.

3 The Design of the Framework
The framework has three main components: some abstract definitions of languages and compilers using
locales, a generic definition of program behaviour, and some composition operations over simulations
and compilers.

3.1 Locales
The definition of programming languages is separated into two parts: an abstract semantics and a con-
crete program representation.

locale semantics =
fixes step :: ′state⇒ ′state⇒ bool and final :: ′state⇒ bool
assumes final-finished: final s =⇒ finished step s

locale language = semantics step final
for step and final :: ′state⇒ bool +
fixes load :: ′prog⇒ ′state option

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

The semantics locale represents the semantics as an abstract machine. It is expressed by a transition
system with a transition relation step—usually written as an infix (→) arrow—and final states final.
The language locale represents the concrete program representation (type variable ′prog), which can be
transformed into a program state (type variable ′state) by the load function. The set of initial states of
the transition system is implicitly defined by the codomain of load.

locale backward-simulation =
L1: semantics step1 final1 + L2: semantics step2 final2 + well-founded (@)
for

step1 :: ′state1⇒ ′state1⇒ bool and step2 :: ′state2⇒ ′state2⇒ bool and
final1 :: ′state1⇒ bool and final2 :: ′state2⇒ bool and
order :: ′index⇒ ′index⇒ bool (infix @) +

fixes match :: ′index⇒ ′state1⇒ ′state2⇒ bool
assumes

match-final: match i s1 s2 =⇒ final2 s2 =⇒ final1 s1 and
simulation: match i s1 s2 =⇒ s2→2 s2 ′=⇒
(∃ i ′ s1 ′. s1→1

++ s1 ′∧ match i ′ s1 ′ s2 ′) ∨ (∃ i ′. match i ′ s1 s2 ′∧ i ′@ i)

A simulation is defined between two semantics L1 and L2. A match predicate expresses that two states
from L1 and L2 are equivalent. The match predicate is also parameterized with an ordering used to avoid
stuttering.

The only two assumptions of a backward simulation are that a final state in L2 will also be a final in L1,
and that a step in L2 will either represent a non-empty sequence of steps in L1—the (→1

++) relation is
the transitive closure of the (→1) relation—or will result in an equivalent state. Stuttering is ruled out
by the requirement that the index on the match predicate decreases with respect to the well-founded (@)
ordering.

locale compiler =
L1: language step1 final1 load1 + L2: language step2 final2 load2 +
backward-simulation step1 step2 final1 final2 order match
for

step1 and step2 and
final1 and final2 and
load1 :: ′prog1⇒ ′state1 option and load2 :: ′prog2⇒ ′state2 option and
order :: ′index⇒ ′index⇒ bool and match +

fixes compile :: ′prog1⇒ ′prog2 option
assumes compile-load: compile p1 = Some p2 =⇒ load1 p1 = Some s1 =⇒ ∃ s2 i. load2 p2 = Some s2 ∧ match

i s1 s2

The compiler locale relates two languages, L1 and L2, by a backward simulation and provides a compile
partial function from a concrete program in L1 to a concrete program in L2. The only assumption is
that a successful compilation results in a program which, when loaded, is equivalent to the loaded initial
program.

3.2 Behaviours
We define a generic datatype to encode three broad execution behaviours: successful termination (Ter-
minates), non-terminating execution (Diverges), and going wrong (Goes-wrong).

datatype ′state behaviour = Terminates ′state | Diverges | Goes-wrong ′state

Terminating behaviours are annotated with the last state of the execution in order to compare the result

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

of two executions with the rel-behaviour :: (′a⇒ ′b⇒ bool)⇒ ′a behaviour⇒ ′b behaviour⇒ bool
relation.

f s1 s2 =⇒ rel-behaviour f (Terminates s1) (Terminates s2)
rel-behaviour f Diverges Diverges

f s1 s2 =⇒ rel-behaviour f (Goes-wrong s1) (Goes-wrong s2)

The exact meaning of the three behaviours is defined in the semantics locale, where a (⇓) :: ′state
⇒ ′state behaviour ⇒ bool relation is defined to assign an execution behaviour to a program state.
The (→∗) relation is the reflexive transitive closure of the (→) relation and (→∞) is its coinductive,
infinitely transitive closure. The predicate finished :: (′a⇒ ′a⇒ bool)⇒ ′a⇒ bool identifies a state
that cannot make a transition.

s1→∗ s2 finished (→) s2 final s2
s1 ⇓ Terminates s2

state-terminates
s1→∞

s1 ⇓ Diverges
state-diverges

s1→∗ s2 finished (→) s2 ¬ final s2
s1 ⇓ Goes-wrong s2

state-goes-wrong

Even though the (→) transition relation in the semantics locale need not be deterministic, if it happens
to be, then the behaviour of a program becomes deterministic too.

∧
x y z.

x→ y x→ z
y = z

s ⇓ b1 s ⇓ b2

b1 = b2

The main correctness theorem states that, for any two matching programs, any not wrong behaviour
of the later is also a behaviour of the former. In other words, if the compiled program does not crash,
then its behaviour, whether it terminates or not, is a also a valid behaviour of the source program. The
predicate is-wrong :: ′state behaviour⇒ bool identifies wrong behaviours.

match i s1 s2 s2 ⇓2 b2 ¬ is-wrong b2

∃ b1 i ′. s1 ⇓1 b1 ∧ rel-behaviour (match i ′) b1 b2

Because this theorem is proven in the context of the backward-simulation and, thus, only depends on its
parameters and assumptions, it is independent of the concrete programming language, and need only be
to be proven once. It automatically holds for all interpretations of backward-simulation.

As a corollary, the preservation of behaviour can be lifted to the compilation of concrete program rep-
resentation.

compile p1 = Some p2

load1 p1 = Some s1 load2 p2 = Some s2 s2 ⇓2 b2 ¬ is-wrong b2

∃ b1 i. s1 ⇓1 b1 ∧ rel-behaviour (match i) b1 b2

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

3.3 Generic Composition of Simulations and Compilers
We define the generic composition of matching functions, � :: (′a⇒ ′b⇒ ′c⇒ bool)⇒ (′d⇒ ′c⇒ ′e
⇒ bool)⇒ ′a × ′d ⇒ ′b⇒ ′e⇒ bool, and orderings, (<∗lex∗>) :: (′a × ′a) set ⇒ (′b × ′b) set ⇒
((′a × ′b) × ′a × ′b) set, such that the composition of two backward simulations is itself a backward
simulation.

backward-simulation (→1) (→2) final1 final2 (@1) (≈1)
backward-simulation (→2) (→3) final2 final3 (@2) (≈2)

backward-simulation (→1) (→3) final1 final3 (lex-prodp (@1
++) (@2)) ((≈1) � (≈2))

We define the generic (W) :: (′a ⇒ ′b option) ⇒ (′c ⇒ ′a option) ⇒ ′c ⇒ ′b option composition
operator on compilers, which corresponds to the monadic bind of the option type found in a compiler’s
codomain.

(C2 W C1) p ≡ Option.bind (C1 p) C2

Its correctness can then be generically proven for any two interpretations of the compiler locale.

compiler (→1) (→2) final1 final2 load1 load2 (@1) (≈1) C1
compiler (→2) (→3) final2 final3 load2 load3 (@2) (≈2) C2

compiler (→1) (→3) final1 final3 load1 load3 (lex-prodp (@1
++) (@2)) ((≈1) � (≈2)) (C2 W C1)

4 An Instantiation of the Framework
The first programming languages for which we instantiated the framework are three interpreted, stack-
based languages. The first one, Std, is a standard assembly language with push/pop and load/store
instructions, conditional jumps, n-ary built-in operations, and (possibly recursive) function calls. The
second language, Inca expands Std with inline caching, i.e. operations that are faster for specific operand
types but fallback to a generic operation otherwise. The third language, Ubx, goes one step further by
introducing operations that operate on unboxed operands.

The matter of study for these languages was the preservation of a program’s behaviour after its opera-
tions have been optimized. To this end, we abstracted away from many concrete, yet irrelevant details.

locale env = ...
locale nary-operations = ...
datatype (′var, ′fun, ′op) instr = ...
datatype ′instr fundef = ...
datatype (′fenv, ′menv, ′var, ′fun, ′op) state = ...
datatype (′fenv, ′henv, ′fun) prog = ...
locale std =

Fenv: env F-empty F-get F-add F-to-list +
Henv: env M-empty M-get M-add M-to-list +
nary-operations eval-op arity-op
for

F-empty and F-get :: ′fenv⇒ ′fun⇒ (′var, ′fun, ′op) instr fundef option and
F-add and F-to-list and
M-empty and M-get :: ′menv⇒ ′var⇒ ′value option and

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

M-add and M-to-list and
eval-op :: ′op⇒ ′value list⇒ ′value and arity-op

begin
inductive step :: (′fenv, ′menv, ′var, ′fun, ′op) state⇒ (′fenv, ′menv, ′var, ′fun, ′op) state⇒ bool where ...
inductive final :: (′fenv, ′menv, ′var, ′fun, ′op) state⇒ bool where ...
definition load :: (′fenv, ′menv, ′fun) prog⇒ (′fenv, ′menv, ′var, ′fun, ′op) state option where ...
lemma final-finished: final s =⇒ finished step s ...
sublocale std-sem: semantics step final ...
sublocale std-lang: language step final load ...

end

The locale env expresses a dynamic key-value environment, of which we use two instances to hold
function definitions and dynamic memory. The locale nary-operations expresses a set of operations,
each of which may have a different arity, assorted with an evaluation function.

Because locales do not support the definition of new types, the instr, fundef, prog, and state datatypes
needed to be defined in the top-level theory. Moreover, these datatypes need to abstract over multiples
types, which are fixed only inside the std locale. To name the different abstract types in the for section,
we provided the minimum possible mount of type annotations.

The step and final relations, and the load function all depend on the fixed locale parameters and types
and, thus, need to be defined inside the locale. They instantiate the generic datatypes using the locale’s
fixed types.

The lemma final-finished can then be stated and proven. Finally, the semantics and language locales can
be interpreted2, thereby proving that Std corresponds to our abstraction of language with a semantics.
This also specializes all general results of said locales to this concrete language definition. The two
other languages, Inca and Ubx, follow the same structure.

locale std-inca-simulation =
Lstd: std Fstd-empty Fstd-get Fstd-add Fstd-to-list M-empty M-get M-add M-to-list

eval-op arity-op +
Linca: inca Finca-empty Finca-get Finca-add Finca-to-list M-empty M-get M-add M-to-list
eval-op arity-op eval-opinl inl deinl

for
Fstd-empty and Fstd-get :: ′fstd-env⇒ ′fun⇒ (′var, ′fun, ′op) Std.instr Std.fundef option and
Fstd-add and Fstd-to-list and
Finca-empty and Finca-get :: ′finca-env⇒ ′fun⇒ (′var, ′fun, ′op, ′opinl) Inca.instr Inca.fundef option and
Finca-add and Finca-to-list and
M-empty and M-get :: ′menv⇒ ′var⇒ ′value option and
M-add and M-to-list and
eval-op :: ′op⇒ ′value list⇒ ′value and arity-op and
eval-opinl and inl and deinl :: ′opinl⇒ ′inl

begin
inductive match ::

nat⇒
(′fstd-env, ′menv, ′var, ′fun, ′op) Std.state⇒
(′finca-env, ′menv, ′var, ′fun, ′op, ′opinl) Inca.state⇒
bool where ...

lemma match-final: match i s1 s2 =⇒ Linca.final s2 =⇒ Lstd.final s1 ...
lemma simulation: match i s1 s2 =⇒ Linca.step s2 s2 ′=⇒
(∃ i ′ s1 ′. Lstd.step++ s1 s1 ′∧ match i ′ s1 ′ s2 ′) ∨ (∃ i ′. match i ′ s1 s2 ′∧ i ′< i) ...

sublocale std-inca-backward-simulation:

2The sublocale command is a variation of the interpretation command.

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

backward-simulation Lstd.step Linca.step Lstd.final Linca.final (<) match ...
end

Proving a backward simulation between Std and Inca requires to extend the std and inca locales, define
the required match, prove the two required match-final and simulation lemmas, and finally interpret the
backward-simulation locale. Both languages have distinct environment types for function definitions
but share the same environment type for dynamic memory. They also share the same set of built-in
operations.

context std-inca-simulation begin
definition compile :: (′fstd-env, ′menv, ′fun) Std.prog⇒ (′finca-env, ′menv, ′fun) Inca.prog option where ...
lemma compile-load: compile p1 = Some p2 =⇒ Lstd.load p1 = Some s1 =⇒ ∃ s2 i. Linca.load p2 = Some s2
∧ match i s1 s2 ...

sublocale std-to-inca-compiler:
compiler Lstd.step Linca.step Lstd.final Linca.final Lstd.load Linca.load (<) match compile ...

end

Defining the compiler and proving its correctness can be done in the context of the std-inca-simulation
locale, because no new fixed parameters or types are required. It only requires to define the compilation
function, prove the compile-load lemma instantiate the compiler locale.

With this last instantiation, the framework automatically instantiates the theorem on preservation of
behaviour for compiled programs, which is the property we were interested in.

5 Discussion
Using locales as a modularization tool for our generic framework turned out to be elegant at times and
frustrating in other cases.

5.1 Strengths of the Approach
Parameters, assumptions, and derived elements are clearly separated. The syntax used to define a
locale enables the user to clearly state the parameters and assumptions that are abstracted over. Derived
elements such as function definitions and lemmas are clearly separated by being defined later in a locale
context. The fact that these extensions can be done at any point following the locale’s definition gives a
lot of flexibility when structuring the formalization.

It is possible to abstract over multiple types. Locales enable fixed variables to depend on multiple
type variables. This makes them more general than type classes, with which they have otherwise a lot
in common. While traditional type classes permit to abstract over operations on a given abstract type,
locales permit to abstract over both operations on concrete types and multiple abstract types. In fact,
type classes in Isabelle/HOL are just syntactic sugar for locales with a single type variable.

It is possible to have multiple interpretations for a given set of type. Because a locale interpretation
introduces a new namespace when specializing the derived elements, multiple instantiations are possible
for a given set of types. A classical example for such a situation is a partial order over the integers. Using
traditional type classes, one has to decide a canonical order that will be associated with the integer type.
In order to use an alternate order, one has to define a bijection to an alternative type which instantiate
the type class accordingly. As many distinct types and bijections are required as distinct instantiations
are wished.

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

5.2 Weaknesses of the Approach
Parametric types and type aliases cannot be defined in locales. This limitation requires the user to
generalize data types to abstract over any type variable fixed in the locale definition and define them
outside of the locale. This was e.g. the case for the instr, fundef, prog, and state data types of the Std,
Inca, and Ubx languages. This generalization is trivial, since a fixed type variable in a locale is akin to
a type variable in a data type definition. The burden shows up when referring to the generic type in a
type annotation, where it must be explicitly instantiated. Because parametric type aliases are also not
supported, the instantiation has to be repeated over and over. As the number of type variables increases,
type annotations become complex, long to write, and hard to read.

When extending existing locales, type annotations on fixed variables are required to name type
variables. These variables appear in the for section and their types are inferred from their usage in
instantiating the extended locales to be extended. Type inference even succeeds in cases some type
variables must be unified between multiple locale instantiations, as is the case in the compiler locale.
The user must nevertheless provide some type annotations in order to name the type variables that will
be referred later. In practice, most of them are requires in type annotations.

Proving lemmas involving locale predicates have considerable syntactic overhead. Consider for ex-
ample the compiler composition lemma, where two hypotheses and the conclusion are locale predicates
of the compiler locale. Proving this lemma involves accessing the language instance predicates acces-
sible with expressions, such as assms(1)[THEN compiler.axioms(1)]. The problem with this syntax is
twofold: (i) it depends on the order in which the axioms were stated, and (ii) it does not scale well when
the user needs to extract multiple axioms from multiple assumptions. The first problem could be solved
by automatically adding lemmas using the name of the extension, e.g., compiler.L1 would be a synonym
of compiler.axioms(1) to refer to the first language instance predicate of the compiler’s definition. The
second could be alleviated if unnamed contexts supported locales extension.

References to a locale’s fixed variables and derived definitions are syntactically different. When
extending locales, as is the case in the backward simulation locale, derived definitions of the two lan-
guages are accessible with uniform names in some namespaces, such as L1.behaves and L2.behaves.
Fixed parameters, by contrast, are only accessible using their given name, e.g., step1 and step2. Even
though explicitly naming locale parameters may be omitted in simple cases, it is require as soon as two
locales fix parameters with the same name. While writing locales for software abstractions, as opposed
to mathematical structures, we observed that fixed parameters must be named in all but the most trivial
cases.

The lack of a uniform syntax to access derived definitions and parameters also has an undesired impact
on refactoring. When replacing a fixed parameter by an equivalent derived definition, the user may not
just have adapt all interpretations, but also all derived definitions and theorems to use the prefixed name.
Although this would not necessarily be a problem in the absence of name clashes, a uniform naming
scheme allowing the systematical use of the interpretation’s prefix benefits both, the locale’s design and
implementation.

The syntax overhead of locale extension increases with the number of fixed parameters or types.
This direct proportional relation is evident from the definitions of the std-inca-simulation locale. The
current syntax seems to serve two purposes: (i) provide unique names for fixed parameters, and (ii) state
which abstract types are shared in parameters’ types.

To satisfy the first purpose, one could name the locale instances and use the uniform naming scheme
mentioned above, thereby increasing their utility and applicability. To satisfy second purpose, we believe

A Generic Framework for Verified Compilers Using Isabelle/HOL’s Locales Desharnais and Brunthaler

that the locale mechanism should offer an alternative syntax that allows for a more succinct way to
express type dependencies between different locale extensions.

6 Conclusion
We presented the first version of a generic framework for formalizing compilers in Isabelle/HOL. It is
based on locales to abstract over the concrete languages and program transformations, provides general
definitions for program behaviours and compiler compositions, and generically proves preservation of
behaviour. This framework emerged as a side product of our formalization of three stack-based lan-
guages that implementing different optimizations. It helped us to emphasis the commonalities between
the different theories and to reduce some duplication. Possible future work includes extending the se-
mantics to support traces, exploring how to extract executable programs from such formalizations, and
exploring how to simplify or automate repetitive operations such as the composition of multiple com-
pilers.

Our experience indicates that the use of locales in Isabelle is held back by its potential. On the one
hand, the additional power afforded by locales to structure proof developments is an enormous benefit.
This benefit is particularly relevant for the domain of formalizing and verifying software artifacts, as
demonstrated by our exemplary development.

On the other hand, the syntactic overhead experienced clearly represents an obstacle to adopting Is-
abelle. If the overhead were addressed by Isabelle in one way or another, we firmly believe that Is-
abelle could position itself as the premier choice for programming language semantics formalization
and verification—a domain that is becoming increasingly important and that could well use the excel-
lent automation capabilities offered by Isabelle.

7 Acknowledgement
This paper is part of the project CONCORDIA, a project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 830927.

References
[1] C. Ballarin. Locales: A Module System for Mathematical Theories. Journal of Automated Reasoning,

52(2):123–153, 2014.
[2] M. Desharnais. A generic framework for verified compilers. Archive of Formal Proofs, Feb. 2020. https:

//isa-afp.org/entries/VeriComp.html, Formal proof development.
[3] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: A verified implementation of ML. In Principles

of Programming Languages (POPL), pages 179–191. ACM Press, Jan. 2014.
[4] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363–446, 2009.
[5] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order logic, volume

2283. Springer Science & Business Media, 2002.
[6] D. Sangiorgi. Introduction to bisimulation and coinduction. Cambridge University Press, 2011.
[7] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C compilers. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2011.

https://isa-afp.org/entries/VeriComp.html
https://isa-afp.org/entries/VeriComp.html

	Introduction
	Background
	Programming Language Semantics
	Isabelle's locales

	The Design of the Framework
	Locales
	Behaviours
	Generic Composition of Simulations and Compilers

	An Instantiation of the Framework
	Discussion
	Strengths of the Approach
	Weaknesses of the Approach

	Conclusion
	Acknowledgement

