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Abstract

This tutorial describes the new package for defining datatypes and
codatatypes in Isabelle/HOL. The package provides four main com-
mands: datatype_new, codatatype, primrec, and primcorec.
The first command is expected to eventually replace the old data-
type command.
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1 Introduction
The 2013 edition of Isabelle introduced a new definitional package for freely
generated datatypes and codatatypes. The datatype support is similar to
that provided by the earlier package due to Berghofer and Wenzel [1], docu-
mented in the Isar reference manual [9]; indeed, replacing the keyword data-
type by datatype_new is usually all that is needed to port existing theories
to use the new package.

Perhaps the main advantage of the new package is that it supports recur-
sion through a large class of non-datatypes, such as finite sets:

datatype_new ′a tree f s = Node f s (lbl f s :
′a) (subf s : “ ′a tree f s fset ”)

Another strong point is the support for local definitions:

context linorder
begin
datatype_new flag = Less | Eq | Greater
end

Furthermore, the package provides a lot of convenience, including automat-
ically generated discriminators, selectors, and relators as well as a wealth of
properties about them.

In addition to inductive datatypes, the new package supports coinduc-
tive datatypes, or codatatypes, which allow infinite values. For example, the
following command introduces the type of lazy lists, which comprises both
finite and infinite values:

codatatype ′a llist = LNil | LCons ′a “ ′a llist ”

Mixed inductive–coinductive recursion is possible via nesting. Compare the
following four Rose tree examples:

datatype_new ′a tree f f = Node f f
′a “ ′a tree f f list ”

datatype_new ′a tree f i = Node f i
′a “ ′a tree f i llist ”

codatatype ′a tree i f = Node i f
′a “ ′a tree i f list ”
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codatatype ′a tree i i = Node i i
′a “ ′a tree i i llist ”

The first two tree types allow only paths of finite length, whereas the last
two allow infinite paths. Orthogonally, the nodes in the first and third types
have finitely many direct subtrees, whereas those of the second and fourth
may have infinite branching.

The package is part of Main. Additional functionality is provided by the
theory BNF_Axiomatization, located in the directory ~~/src/HOL/Library.

The package, like its predecessor, fully adheres to the LCF philosophy [4]:
The characteristic theorems associated with the specified (co)datatypes are
derived rather than introduced axiomatically.1 The package is described
in a number of papers [2, 3, 7, 8]. The central notion is that of a bounded
natural functor (BNF)—a well-behaved type constructor for which nested
(co)recursion is supported.

This tutorial is organized as follows:

• Section 2, “Defining Datatypes,” describes how to specify datatypes
using the datatype_new command.
• Section 3, “Defining Recursive Functions,” describes how to specify re-

cursive functions using primrec.
• Section 4, “Defining Codatatypes,” describes how to specify codatatypes

using the codatatype command.
• Section 5, “Defining Corecursive Functions,” describes how to specify

corecursive functions using the primcorec and primcorecursive com-
mands.
• Section 6, “Introducing Bounded Natural Functors,” explains how to

use the bnf command to register arbitrary type constructors as BNFs.
• Section 7, “Deriving Destructors and Theorems for Free Constructors,”

explains how to use the command free_constructors to derive de-
structor constants and theorems for freely generated types, as per-
formed internally by datatype_new and codatatype.

The command datatype_new is expected to replace datatype in a
future release. Authors of new theories are encouraged to use the new com-
mands, and maintainers of older theories may want to consider upgrading.

Comments and bug reports concerning either the tool or this tutorial
should be directed to the authors at blanNOSPAMchette@in.tum.de, deshNOSPAMarna@in.
tum.de, loreNOSPAMnz.panny@in.tum.de, popeNOSPAMscua@in.tum.de, and trayNOSPAMtel@in.
tum.de.

1However, some of the internal constructions and most of the internal proof obligations
are skipped if the quick_and_dirty option is enabled.
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2 Defining Datatypes
Datatypes can be specified using the datatype_new command.

2.1 Introductory Examples
Datatypes are illustrated through concrete examples featuring different fla-
vors of recursion. More examples can be found in the directory ~~/src/HOL/
BNF/Examples.

2.1.1 Nonrecursive Types

Datatypes are introduced by specifying the desired names and argument
types for their constructors. Enumeration types are the simplest form of
datatype. All their constructors are nullary:

datatype_new trool = Truue | Faalse | Perhaaps

Here, Truue, Faalse, and Perhaaps have the type trool.
Polymorphic types are possible, such as the following option type, modeled

after its homologue from the Option theory:

datatype_new ′a option = None | Some ′a

The constructors are None :: ′a option and Some :: ′a ⇒ ′a option.
The next example has three type parameters:

datatype_new (′a, ′b, ′c) triple = Triple ′a ′b ′c

The constructor is Triple :: ′a ⇒ ′b ⇒ ′c ⇒ (′a, ′b, ′c) triple. Unlike in
Standard ML, curried constructors are supported. The uncurried variant is
also possible:

datatype_new (′a, ′b, ′c) tripleu = Tripleu “ ′a ∗ ′b ∗ ′c ”

Occurrences of nonatomic types on the right-hand side of the equal sign must
be enclosed in double quotes, as is customary in Isabelle.

2.1.2 Simple Recursion

Natural numbers are the simplest example of a recursive type:

datatype_new nat = Zero | Suc nat

Lists were shown in the introduction. Terminated lists are a variant that
stores a value of type ′b at the very end:

datatype_new (′a, ′b) tlist = TNil ′b | TCons ′a “ (′a, ′b) tlist ”
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2.1.3 Mutual Recursion

Mutually recursive types are introduced simultaneously and may refer to each
other. The example below introduces a pair of types for even and odd natural
numbers:

datatype_new even_nat = Even_Zero | Even_Suc odd_nat
and odd_nat = Odd_Suc even_nat

Arithmetic expressions are defined via terms, terms via factors, and factors
via expressions:

datatype_new (′a, ′b) exp =
Term “ (′a, ′b) trm ” | Sum “ (′a, ′b) trm ” “ (′a, ′b) exp ”

and (′a, ′b) trm =
Factor “ (′a, ′b) fct ” | Prod “ (′a, ′b) fct ” “ (′a, ′b) trm ”

and (′a, ′b) fct =
Const ′a | Var ′b | Expr “ (′a, ′b) exp ”

2.1.4 Nested Recursion

Nested recursion occurs when recursive occurrences of a type appear under
a type constructor. The introduction showed some examples of trees with
nesting through lists. A more complex example, that reuses our option type,
follows:

datatype_new ′a btree =
BNode ′a “ ′a btree option ” “ ′a btree option ”

Not all nestings are admissible. For example, this command will fail:

datatype_new ′a wrong = W 1 | W 2 “ ′a wrong ⇒ ′a ”

The issue is that the function arrow ⇒ allows recursion only through its
right-hand side. This issue is inherited by polymorphic datatypes defined in
terms of ⇒:

datatype_new (′a, ′b) fun_copy = Fun “ ′a ⇒ ′b ”
datatype_new ′a also_wrong = W 1 | W 2 “ (′a also_wrong , ′a) fun_copy ”

The following definition of ′a-branching trees is legal:

datatype_new ′a ftree = FTLeaf ′a | FTNode “ ′a ⇒ ′a ftree ”

And so is the definition of hereditarily finite sets:

datatype_new hfset = HFSet “hfset fset ”

In general, type constructors (′a1, . . . ,
′am) t allow recursion on a subset of

their type arguments ′a1, . . . , ′am . These type arguments are called live; the
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remaining type arguments are called dead. In ′a ⇒ ′b and (′a, ′b) fun_copy,
the type variable ′a is dead and ′b is live.

Type constructors must be registered as BNFs to have live arguments.
This is done automatically for datatypes and codatatypes introduced by the
datatype_new and codatatype commands. Section 6 explains how to
register arbitrary type constructors as BNFs.

Here is another example that fails:

datatype_new ′a pow_list = PNil ′a | PCons “ (′a ∗ ′a) pow_list ”

This attempted definition features a different flavor of nesting, where the
recursive call in the type specification occurs around (rather than inside)
another type constructor.

2.1.5 Auxiliary Constants and Properties

The datatype_new command introduces various constants in addition to
the constructors. With each datatype are associated set functions, a map
function, a relator, discriminators, and selectors, all of which can be given
custom names. In the example below, the familiar names null, hd, tl, set,
map, and list_all2, override the default names is_Nil, un_Cons1, un_Cons2,
set_list, map_list, and rel_list :

datatype_new (set : ′a) list =
null : Nil
| Cons (hd : ′a) (tl : “ ′a list ”)
for
map: map
rel : list_all2

where
“ tl Nil = Nil ”

The types of the constants that appear in the specification are listed below.

Constructors: Nil :: ′a list
Cons :: ′a ⇒ ′a list ⇒ ′a list

Discriminator: null :: ′a list ⇒ bool
Selectors: hd :: ′a list ⇒ ′a

tl :: ′a list ⇒ ′a list
Set function: set :: ′a list ⇒ ′a set
Map function: map :: (′a ⇒ ′b) ⇒ ′a list ⇒ ′b list
Relator: list_all2 :: (′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ bool

The discriminator null and the selectors hd and tl are characterized by
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the following conditional equations:

null xs =⇒ xs = Nil ¬ null xs =⇒ Cons (hd xs) (tl xs) = xs

For two-constructor datatypes, a single discriminator constant is sufficient.
The discriminator associated with Cons is simply λxs . ¬ null xs.

The where clause at the end of the command specifies a default value
for selectors applied to constructors on which they are not a priori specified.
Here, it is used to ensure that the tail of the empty list is itself (instead of
being left unspecified).

Because Nil is nullary, it is also possible to use λxs . xs = Nil as a dis-
criminator. This is the default behavior if we omit the identifier null and
the associated colon. Some users argue against this, because the mixture of
constructors and selectors in the characteristic theorems can lead Isabelle’s
automation to switch between the constructor and the destructor view in
surprising ways.

The usual mixfix syntax annotations are available for both types and
constructors. For example:

datatype_new (′a, ′b) prod (infixr “∗” 20) = Pair ′a ′b

datatype_new (set : ′a) list =
null : Nil (“ []”)
| Cons (hd : ′a) (tl : “ ′a list ”) (infixr “#” 65)
for
map: map
rel : list_all2

Incidentally, this is how the traditional syntax can be set up:

syntax “_list ” :: “args ⇒ ′a list ” (“ [(_)]”)

translations
“ [x , xs]” == “x # [xs]”
“ [x ]” == “x # []”

2.2 Command Syntax
2.2.1 datatype_new

datatype_new : local_theory → local_theory
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datatype_new
�� ���

�target

�
�

�
�dt-options

�
�

�

��
� dt-name =

���� dt-ctor�
� |

����
�
�

�

��
��

�map-rel

�
�

�
�where

�� �� prop�
� |

����
�
�

�
�

�

��

� and
�� ��

�

�
dt-options

(
���� discs_sels

�� ���
�no_code

�� ��
�
�

�

� ,
����

�

�

)
����

map-rel

for
�� �� map

�� ���
�rel

�� ��
�
�

:
����name�

�

�

�
The datatype_new command introduces a set of mutually recursive data-
types specified by their constructors.

The syntactic entity target can be used to specify a local context (e.g.,
(in linorder) [9]), and prop denotes a HOL proposition.



2 Defining Datatypes 10

The optional target is optionally followed by one or both of the following
options:

• The discs_sels option indicates that discriminators and selectors should
be generated. The option is implicitly enabled if names are specified
for discriminators or selectors.

• The no_code option indicates that the datatype should not be regis-
tered for code generation.

The optional where clause specifies default values for selectors. Each
proposition must be an equation of the form un_D (C . . . ) = . . . , where C
is a constructor and un_D is a selector.

The left-hand sides of the datatype equations specify the name of the type
to define, its type parameters, and additional information:

dt-name

�
�tyargs

�
�

name �
�mixfix

�
�

tyargs

typefree�
� (

���� �
� dead

�� ���
�name :

����
�
�

�
�

typefree�

� ,
����

�

�

)
����

�
�

The syntactic entity name denotes an identifier, mixfix denotes the usual
parenthesized mixfix notation, and typefree denotes fixed type variable (′a,
′b, . . . ) [9].

The optional names preceding the type variables allow to override the
default names of the set functions (set1_t, . . . , setM_t). Type arguments can
be marked as dead by entering “dead ” in front of the type variable (e.g., “(dead
′a)”); otherwise, they are live or dead (and a set function is generated or not)
depending on where they occur in the right-hand sides of the definition.
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Declaring a type argument as dead can speed up the type definition but will
prevent any later (co)recursion through that type argument.

Inside a mutually recursive specification, all defined datatypes must men-
tion exactly the same type variables in the same order.

dt-ctor

�
�name :

����
�
�

name �
�dt-ctor-arg

�
�

�
�mixfix

�
�

The main constituents of a constructor specification are the name of the
constructor and the list of its argument types. An optional discriminator
name can be supplied at the front to override the default, which is λx . x =
C j for nullary constructors and t .is_C j otherwise.

dt-ctor-arg

type�
� (

����name :
����type )

����
�
�

The syntactic entity type denotes a HOL type [9].
In addition to the type of a constructor argument, it is possible to specify

a name for the corresponding selector to override the default name (un_C j i).
The same selector names can be reused for several constructors as long as
they share the same type.

2.2.2 datatype_compat

datatype_compat : local_theory → local_theory

datatype_compat
�� �� name�

�
�
�
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The datatype_compat command registers new-style datatypes as old-style
datatypes. For example:

datatype_compat even_nat odd_nat

ML {∗ Datatype_Data.get_info @{theory} @{type_name even_nat} ∗}

The syntactic entity name denotes an identifier [9].
The command is interesting because the old datatype package provides

some functionality that is not yet replicated in the new package, such as the
integration with Quickcheck.

A few remarks concern nested recursive datatypes:

• The old-style, nested-as-mutual induction rule and recursor theorems
are generated under their usual names but with “compat_” prefixed
(e.g., compat_tree.induct).
• All types through which recursion takes place must be new-style data-

types or the function type. In principle, it should be possible to support
old-style datatypes as well, but this has not been implemented yet (and
there is currently no way to register old-style datatypes as new-style
datatypes).
• The recursor produced for types that recurse through functions has a

different signature than with the old package. This might affect the
behavior of some third-party extensions.

An alternative to datatype_compat is to use the old package’s rep_
datatype command. The associated proof obligations must then be dis-
charged manually.

2.3 Generated Constants
Given a datatype (′a1, . . . ,

′am) t with m > 0 live type variables and n
constructors t .C 1, . . . , t .C n , the following auxiliary constants are introduced:

Case combinator: t .case_t (rendered using the familiar case–of syntax)
Discriminators: t .is_C 1, . . . ,t .is_C n

Selectors: t .un_C 11, . . . ,t .un_C 1k 1
...

t .un_C n1, . . . ,t .un_C nkn

Set functions: t .set1_t, . . . , t .setm_t
Map function: t .map_t
Relator: t .rel_t
Recursor: t .rec_t
Size function: t .size_t
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The case combinator, discriminators, and selectors are collectively called de-
structors. The prefix “t .” is an optional component of the names and is
normally hidden.

In addition to the above, the size class is instantiated to overload the size
function based on t .size_t.

2.4 Generated Theorems
The characteristic theorems generated by datatype_new are grouped in
three broad categories:

• The free constructor theorems (Section 2.4.1) are properties of the con-
structors and destructors that can be derived for any freely generated
type. Internally, the derivation is performed by free_constructors.

• The functorial theorems (Section 2.4.2) are properties of datatypes re-
lated to their BNF nature.

• The inductive theorems (Section 2.4.3) are properties of datatypes re-
lated to their inductive nature.

The full list of named theorems can be obtained as usual by entering the
command print_theorems immediately after the datatype definition. This
list normally excludes low-level theorems that reveal internal constructions.
To make these accessible, add the line

declare [[bnf_note_all ]]

to the top of the theory file.

2.4.1 Free Constructor Theorems

The free constructor theorems are partitioned in three subgroups. The first
subgroup of properties is concerned with the constructors. They are listed
below for ′a list :

t .inject [iff , induct_simp]:
(x21 # x22 = y21 # y22) = (x21 = y21 ∧ x22 = y22)

t .distinct [simp, induct_simp]:
[] 6= x21 # x22
x21 # x22 6= []

t .exhaust [cases t , case_names C 1 . . . C n ]:
[[y = [] =⇒ P ;

∧
x21 x22. y = x21 # x22 =⇒ P ]] =⇒ P
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t .nchotomy :
∀ list . list = [] ∨ (∃ x21 x22. list = x21 # x22)

In addition, these nameless theorems are registered as safe elimination rules:

t .distinct [THEN notE , elim!]:
[] = x21 # x22 =⇒ R
x21 # x22 = [] =⇒ R

The next subgroup is concerned with the case combinator:

t .case [simp, code]:
(case [] of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = f 1
(case x21 # x22 of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = f 2 x21 x22

t .case_cong [fundef_cong ]:
[[list = list ′; list ′ = [] =⇒ f 1 = g1;

∧
x21 x22. list ′ = x21 # x22 =⇒

f 2 x21 x22 = g2 x21 x22]] =⇒ (case list of [] ⇒ f 1 | x21 # x22 ⇒
f 2 x21 x22) = (case list ′ of [] ⇒ g1 | x21 # x22 ⇒ g2 x21 x22)

t .weak_case_cong [cong ]:
list = list ′ =⇒ (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (case
list ′ of [] ⇒ f 1 | x # xa ⇒ f 2 x xa)

t .split :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = ((list = [] −→ P f 1)
∧ (∀ x21 x22. list = x21 # x22 −→ P (f 2 x21 x22)))

t .split_asm :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (¬ (list = [] ∧ ¬ P
f 1 ∨ (∃ x21 x22. list = x21 # x22 ∧ ¬ P (f 2 x21 x22))))

t .splits = split split_asm

The third subgroup revolves around discriminators and selectors:

t .disc [simp]:
null []
¬ null (x21 # x22)

t .discI :
list = [] =⇒ null list
list = x21 # x22 =⇒ ¬ null list

t .sel [simp, code]:
hd (x21 # x22) = x21
tl (x21 # x22) = x22
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t .collapse [simp]:
null list =⇒ list = []
¬ null list =⇒ hd list # tl list = list

t .disc_exclude [dest ]:
These properties are missing for ′a list because there is only one
proper discriminator. Had the datatype been introduced with a sec-
ond discriminator called nonnull, they would have read thusly:
null list =⇒ ¬ nonnull list
nonnull list =⇒ ¬ null list

t .disc_exhaust [case_names C 1 . . . C n ]:
[[null list =⇒ P ; ¬ null list =⇒ P ]] =⇒ P

t .sel_exhaust [case_names C 1 . . . C n ]:
[[list = [] =⇒ P ; list = hd list # tl list =⇒ P ]] =⇒ P

t .expand :
[[null list = null list ′; [[¬ null list ; ¬ null list ′]] =⇒ hd list = hd list ′
∧ tl list = tl list ′]] =⇒ list = list ′

t .sel_split :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = ((list = [] −→ P f 1)
∧ (list = hd list # tl list −→ P (f 2 (hd list) (tl list))))

t .sel_split_asm :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (¬ (list = [] ∧ ¬ P
f 1 ∨ list = hd list # tl list ∧ ¬ P (f 2 (hd list) (tl list))))

t .case_eq_if :
(case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (if null list then f 1 else
f 2 (hd list) (tl list))

In addition, equational versions of t .disc are registered with the [code] at-
tribute.

2.4.2 Functorial Theorems

The functorial theorems are partitioned in two subgroups. The first subgroup
consists of properties involving the constructors or the destructors and either
a set function, the map function, or the relator:

t .set [simp, code]:
set [] = {}
set (x21a # x22) = {x21a} ∪ set x22
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t .set_empty :
null list =⇒ set list = {}

t .sel_set :
¬ null a =⇒ hd a ∈ set a
[[¬ null a; x ∈ set (tl a)]] =⇒ x ∈ set a

t .map [simp, code]:
map fi [] = []
map fi (x21a # x22) = fi x21a # map fi x22

t .disc_map_iff [simp]:
null (map f a) = null a

t .sel_map:
¬ null a =⇒ hd (map f a) = f (hd a)

¬ null a =⇒ tl (map f a) = map f (tl a)

t .rel_inject [simp]:
list_all2 R [] []
list_all2 R (x21a # x22) (y21 # y22) = (R x21a y21 ∧ list_all2
R x22 y22)

t .rel_distinct [simp]:
¬ list_all2 R [] (y21 # y22)
¬ list_all2 R (y21 # y22) []

t .rel_intros :
list_all2 R [] []
[[R x21a y21; list_all2 R x22 y22]] =⇒ list_all2 R (x21a # x22)
(y21 # y22)

t .rel_sel :
list_all2 R a b = (null a = null b ∧ (¬ null a −→ ¬ null b −→ R
(hd a) (hd b) ∧ list_all2 R (tl a) (tl b)))

In addition, equational versions of t .rel_inject and rel_distinct are registered
with the [code] attribute.

The second subgroup consists of more abstract properties of the set func-
tions, the map function, and the relator:

t .set_map:
set (map f v) = f ‘ set v

t .map_comp:
(
∧
z . z ∈ set x =⇒ f z = g z ) =⇒ map f x = map g x
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t .map_cong [fundef_cong ]:
[[x = y ;

∧
z . z ∈ set y =⇒ f z = g z ]] =⇒ map f x = map g y

t .map_id :
map id t = t

t .map_id0 :
map id = id

t .map_ident :
map (λx . x ) t = t

t .rel_compp:
list_all2 (R OO S ) = list_all2 R OO list_all2 S

t .rel_conversep:
list_all2 R−− = (list_all2 R)−−

t .rel_eq :
list_all2 op = = op =

t .rel_flip:
list_all2 R−− a b = list_all2 R b a

t .rel_mono:
R ≤ Ra =⇒ list_all2 R ≤ list_all2 Ra

2.4.3 Inductive Theorems

The inductive theorems are as follows:

t .induct [case_names C 1 . . . C n , induct t ]:
[[P [];

∧
x1 x2. P x2 =⇒ P (x1 # x2)]] =⇒ P list

t1_. . ._tm .induct [case_names C 1 . . . C n ]:
Given m > 1 mutually recursive datatypes, this induction rule can
be used to prove m properties simultaneously.

t .rel_induct [case_names C 1 . . . C n , induct pred ]:
[[list_all2 R x y ; Q [] [];

∧
a21 a22 b21 b22. [[R a21 b21; Q a22 b22]]

=⇒ Q (a21 # a22) (b21 # b22)]] =⇒ Q x y

t1_. . ._tm .rel_induct [case_names C 1 . . . C n ]:
Given m > 1 mutually recursive datatypes, this induction rule can
be used to prove m properties simultaneously.

t .rec [simp, code]:
rec_list f 1 f 2 [] = f 1
rec_list f 1 f 2 (x21 # x22) = f 2 x21 x22 (rec_list f 1 f 2 x22)
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t .rec_o_map:
rec_list h ha ◦ map g = rec_list h (λx xa. ha (g x ) (map g xa))

t .size [simp, code]:
size_list x [] = 0
size_list x (x21 # x22) = x x21 + size_list x x22 + Nat .Suc 0
size [] = 0
size (x21 # x22) = size x22 + Nat .Suc 0

t .size_o_map:
size_list f ◦ map g = size_list (f ◦ g)

For convenience, datatype_new also provides the following collection:

t .simps = t .inject t .distinct t .case t .rec t .map t .rel_inject
t .rel_distinct t .set

2.5 Compatibility Issues
The command datatype_new has been designed to be highly compatible
with the old datatype, to ease migration. There are nonetheless a few
incompatibilities that may arise when porting to the new package:

• The Standard ML interfaces are different. Tools and extensions writ-
ten to call the old ML interfaces will need to be adapted to the new
interfaces. This concerns Quickcheck in particular. Whenever possible,
it is recommended to use datatype_compat to register new-style
datatypes as old-style datatypes.

• The constants t_case, t_rec, and t_size are now called case_t, rec_t,
and size_t.

• The recursor rec_t has a different signature for nested recursive data-
types. In the old package, nested recursion through non-functions was
internally reduced to mutual recursion. This reduction was visible in
the type of the recursor, used by primrec. Recursion through func-
tions was handled specially. In the new package, nested recursion (for
functions and non-functions) is handled in a more modular fashion.
The old-style recursor can be generated on demand using primrec if
the recursion is via new-style datatypes, as explained in Section 3.1.5.

• Accordingly, the induction rule is different for nested recursive data-
types. Again, the old-style induction rule can be generated on demand
using primrec if the recursion is via new-style datatypes, as explained
in Section 3.1.5.
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• The internal constructions are completely different. Proof texts that
unfold the definition of constants introduced by datatype will be dif-
ficult to port.

• Some theorems have different names. For non-mutually recursive data-
types, the alias t .inducts for t .induct is no longer generated. For
m > 1 mutually recursive datatypes, t1_. . ._tm .inducts(i) has been
renamed t i .induct for each i ∈ {1, . . . , t}, and similarly the collection
t1_. . ._tm .size has been divided into t1.size, . . . , tm .size.

• The t .simps collection has been extended. Previously available theorems
are available at the same index.

• Variables in generated properties have different names. This is rarely
an issue, except in proof texts that refer to variable names in the [where
. . . ] attribute. The solution is to use the more robust [of . . . ] syntax.

In the other direction, there is currently no way to register old-style data-
types as new-style datatypes. If the goal is to define new-style datatypes with
nested recursion through old-style datatypes, the old-style datatypes can be
registered as a BNF (Section 6). If the goal is to derive discriminators and
selectors, this can be achieved using free_constructors (Section 7).

3 Defining Recursive Functions
Recursive functions over datatypes can be specified using the primrec com-
mand, which supports primitive recursion, or using the more general fun
and function commands. Here, the focus is on primrec; the other two
commands are described in a separate tutorial [5].

3.1 Introductory Examples
Primitive recursion is illustrated through concrete examples based on the
datatypes defined in Section 2.1. More examples can be found in the directory
~~/src/HOL/BNF_Examples.

3.1.1 Nonrecursive Types

Primitive recursion removes one layer of constructors on the left-hand side
in each equation. For example:

primrec bool_of_trool :: “ trool ⇒ bool ” where
“bool_of_trool Faalse ←→ False ” |
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“bool_of_trool Truue ←→ True ”

primrec the_list :: “ ′a option ⇒ ′a list ” where
“ the_list None = []” |
“ the_list (Some a) = [a]”

primrec the_default :: “ ′a ⇒ ′a option ⇒ ′a ” where
“ the_default d None = d ” |
“ the_default _ (Some a) = a ”

primrec mirrror :: “ (′a, ′b, ′c) triple ⇒ (′c, ′b, ′a) triple ” where
“mirrror (Triple a b c) = Triple c b a ”

The equations can be specified in any order, and it is acceptable to leave out
some cases, which are then unspecified. Pattern matching on the left-hand
side is restricted to a single datatype, which must correspond to the same
argument in all equations.

3.1.2 Simple Recursion

For simple recursive types, recursive calls on a constructor argument are
allowed on the right-hand side:

primrec replicate :: “nat ⇒ ′a ⇒ ′a list ” where
“ replicate Zero _ = []” |
“ replicate (Suc n) x = x # replicate n x ”

primrec at :: “ ′a list ⇒ nat ⇒ ′a ” where
“at (x # xs) j =

(case j of
Zero ⇒ x
| Suc j ′⇒ at xs j ′)”

primrec tfold :: “ (′a ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) tlist ⇒ ′b ” where
“ tfold _ (TNil y) = y ” |
“ tfold f (TCons x xs) = f x (tfold f xs)”

Pattern matching is only available for the argument on which the recursion
takes place. Fortunately, it is easy to generate pattern-maching equations
using the simps_of_case command provided by the theory ~~/src/HOL/
Library/Simps_Case_Conv.

simps_of_case at_simps: at .simps

This generates the lemma collection at_simps :

at (x # xs) Zero = x at (xa # xs) (nat .Suc x ) = at xs x
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The next example is defined using fun to escape the syntactic restrictions
imposed on primitively recursive functions. The datatype_compat com-
mand is needed to register new-style datatypes for use with fun and function
(Section 2.2.2):

datatype_compat nat

fun at_least_two :: “nat ⇒ bool ” where
“at_least_two (Suc (Suc _)) ←→ True ” |
“at_least_two _ ←→ False ”

3.1.3 Mutual Recursion

The syntax for mutually recursive functions over mutually recursive data-
types is straightforward:

primrec
nat_of_even_nat :: “even_nat ⇒ nat ” and
nat_of_odd_nat :: “odd_nat ⇒ nat ”

where
“nat_of_even_nat Even_Zero = Zero ” |
“nat_of_even_nat (Even_Suc n) = Suc (nat_of_odd_nat n)” |
“nat_of_odd_nat (Odd_Suc n) = Suc (nat_of_even_nat n)”

primrec
evale :: “ (′a ⇒ int) ⇒ (′b ⇒ int) ⇒ (′a, ′b) exp ⇒ int ” and
eval t :: “ (′a ⇒ int) ⇒ (′b ⇒ int) ⇒ (′a, ′b) trm ⇒ int ” and
eval f :: “ (′a ⇒ int) ⇒ (′b ⇒ int) ⇒ (′a, ′b) fct ⇒ int ”

where
“evale γ ξ (Term t) = eval t γ ξ t ” |
“evale γ ξ (Sum t e) = eval t γ ξ t + evale γ ξ e ” |
“eval t γ ξ (Factor f ) = eval f γ ξ f ” |
“eval t γ ξ (Prod f t) = eval f γ ξ f + eval t γ ξ t ” |
“eval f γ _ (Const a) = γ a ” |
“eval f _ ξ (Var b) = ξ b ” |
“eval f γ ξ (Expr e) = evale γ ξ e ”

Mutual recursion is possible within a single type, using fun:
fun
even :: “nat ⇒ bool ” and
odd :: “nat ⇒ bool ”

where
“even Zero = True ” |
“even (Suc n) = odd n ” |
“odd Zero = False ” |
“odd (Suc n) = even n ”
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3.1.4 Nested Recursion

In a departure from the old datatype package, nested recursion is normally
handled via the map functions of the nesting type constructors. For example,
recursive calls are lifted to lists using map:

primrec at f f :: “ ′a tree f f ⇒ nat list ⇒ ′a ” where
“at f f (Node f f a ts) js =

(case js of
[] ⇒ a
| j # js ′⇒ at (map (λt . at f f t js ′) ts) j )”

The next example features recursion through the option type. Although
option is not a new-style datatype, it is registered as a BNF with the map
function map_option:

primrec sum_btree :: “ (′a::{zero,plus}) btree ⇒ ′a ” where
“ sum_btree (BNode a lt rt) =

a + the_default 0 (map_option sum_btree lt) +
the_default 0 (map_option sum_btree rt)”

The same principle applies for arbitrary type constructors through which
recursion is possible. Notably, the map function for the function type (⇒) is
simply composition (op ◦):

primrec relabel_ft :: “ (′a ⇒ ′a) ⇒ ′a ftree ⇒ ′a ftree ” where
“ relabel_ft f (FTLeaf x ) = FTLeaf (f x )” |
“ relabel_ft f (FTNode g) = FTNode (relabel_ft f ◦ g)”

For convenience, recursion through functions can also be expressed using λ-
abstractions and function application rather than through composition. For
example:

primrec relabel_ft :: “ (′a ⇒ ′a) ⇒ ′a ftree ⇒ ′a ftree ” where
“ relabel_ft f (FTLeaf x ) = FTLeaf (f x )” |
“ relabel_ft f (FTNode g) = FTNode (λx . relabel_ft f (g x ))”

primrec subtree_ft :: “ ′a ⇒ ′a ftree ⇒ ′a ftree ” where
“ subtree_ft x (FTNode g) = g x ”

For recursion through curried n-ary functions, n applications of op ◦ are
necessary. The examples below illustrate the case where n = 2:

datatype_new ′a ftree2 = FTLeaf 2 ′a | FTNode2 “ ′a ⇒ ′a ⇒ ′a ftree2”

primrec relabel_ft2 :: “ (′a ⇒ ′a) ⇒ ′a ftree2 ⇒ ′a ftree2” where
“ relabel_ft2 f (FTLeaf 2 x ) = FTLeaf 2 (f x )” |
“ relabel_ft2 f (FTNode2 g) = FTNode2 (op ◦ (op ◦ (relabel_ft2 f )) g)”

primrec relabel_ft2 :: “ (′a ⇒ ′a) ⇒ ′a ftree2 ⇒ ′a ftree2” where
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“ relabel_ft2 f (FTLeaf 2 x ) = FTLeaf 2 (f x )” |
“ relabel_ft2 f (FTNode2 g) = FTNode2 (λx y . relabel_ft2 f (g x y))”

primrec subtree_ft2 :: “ ′a ⇒ ′a ⇒ ′a ftree2 ⇒ ′a ftree2” where
“ subtree_ft2 x y (FTNode2 g) = g x y ”

3.1.5 Nested-as-Mutual Recursion

For compatibility with the old package, but also because it is sometimes con-
venient in its own right, it is possible to treat nested recursive datatypes as
mutually recursive ones if the recursion takes place though new-style data-
types. For example:

primrec
at f f :: “ ′a tree f f ⇒ nat list ⇒ ′a ” and
ats f f :: “ ′a tree f f list ⇒ nat ⇒ nat list ⇒ ′a ”

where
“at f f (Node f f a ts) js =

(case js of
[] ⇒ a
| j # js ′⇒ ats f f ts j js ′)” |

“ats f f (t # ts) j =
(case j of

Zero ⇒ at f f t
| Suc j ′⇒ ats f f ts j ′)”

Appropriate induction rules are generated as at f f .induct, ats f f .induct, and
at f f_ats f f .induct. The induction rules and the underlying recursors are gen-
erated on a per-need basis and are kept in a cache to speed up subsequent
definitions.

Here is a second example:
primrec
sum_btree :: “ (′a::{zero,plus}) btree ⇒ ′a ” and
sum_btree_option :: “ ′a btree option ⇒ ′a ”

where
“ sum_btree (BNode a lt rt) =

a + sum_btree_option lt + sum_btree_option rt ” |
“ sum_btree_option None = 0” |
“ sum_btree_option (Some t) = sum_btree t ”

3.2 Command Syntax
3.2.1 primrec

primrec : local_theory → local_theory
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primrec
�� ���

�target

�
�

�
�pr-option

�
�

fixes �

��
�where

�� �� pr-equation�
� |

����
�
�

pr-option

(
����nonexhaustive

�� ��)
����

pr-equation

�
�thmdecl

�
�

prop

The primrec command introduces a set of mutually recursive functions over
datatypes.

The syntactic entity target can be used to specify a local context, fixes
denotes a list of names with optional type signatures, thmdecl denotes an
optional name for the formula that follows, and prop denotes a HOL propo-
sition [9].

The optional target is optionally followed by the following option:

• The nonexhaustive option indicates that the functions are not necessar-
ily specified for all constructors. It can be used to suppress the warning
that is normally emitted when some constructors are missing.

3.3 Recursive Default Values for Selectors
A datatype selector un_D can have a default value for each constructor
on which it is not otherwise specified. Occasionally, it is useful to have
the default value be defined recursively. This leads to a chicken-and-egg
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situation, because the datatype is not introduced yet at the moment when
the selectors are introduced. Of course, we can always define the selectors
manually afterward, but we then have to state and prove all the characteristic
theorems ourselves instead of letting the package do it.

Fortunately, there is a workaround that relies on overloading to relieve us
from the tedium of manual derivations:

1. Introduce a fully unspecified constant un_D0 :: ′a using consts.

2. Define the datatype, specifying un_D0 as the selector’s default value.

3. Define the behavior of un_D0 on values of the newly introduced data-
type using the overloading command.

4. Derive the desired equation on un_D from the characteristic equations
for un_D0.

The following example illustrates this procedure:

consts termi0 :: ′a

datatype_new (′a, ′b) tlist =
TNil (termi : ′b)
| TCons (thd : ′a) (ttl : “ (′a, ′b) tlist ”)
where
“ ttl (TNil y) = TNil y ”
| “ termi (TCons _ xs) = termi0 xs ”

overloading
termi0 ≡ “ termi0 :: (′a, ′b) tlist ⇒ ′b ”

begin
primrec termi0 :: “ (′a, ′b) tlist ⇒ ′b ” where
“ termi0 (TNil y) = y ” |
“ termi0 (TCons x xs) = termi0 xs ”

end

lemma termi_TCons[simp]: “ termi (TCons x xs) = termi xs ”
by (cases xs) auto

3.4 Compatibility Issues
The command primrec’s behavior on new-style datatypes has been designed
to be highly compatible with that for old-style datatypes, to ease migration.
There is nonetheless at least one incompatibility that may arise when porting
to the new package:
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• Some theorems have different names. For m > 1 mutually recursive
functions, f 1_. . ._f m .simps has been broken down into separate sub-
collections f i .simps.

4 Defining Codatatypes
Codatatypes can be specified using the codatatype command. The com-
mand is first illustrated through concrete examples featuring different flavors
of corecursion. More examples can be found in the directory ~~/src/HOL/
BNF/Examples. The Archive of Formal Proofs also includes some useful co-
datatypes, notably for lazy lists [6].

4.1 Introductory Examples
4.1.1 Simple Corecursion

Non-corecursive codatatypes coincide with the corresponding datatypes, so
they are rarely used in practice. Corecursive codatatypes have the same
syntax as recursive datatypes, except for the command name. For example,
here is the definition of lazy lists:

codatatype (lset : ′a) llist =
lnull : LNil
| LCons (lhd : ′a) (ltl : “ ′a llist ”)
for
map: lmap
rel : llist_all2

where
“ ltl LNil = LNil ”

Lazy lists can be infinite, such as LCons 0 (LCons 0 (. . . )) and LCons 0
(LCons 1 (LCons 2 (. . . ))). Here is a related type, that of infinite streams:

codatatype (sset : ′a) stream =
SCons (shd : ′a) (stl : “ ′a stream ”)

for
map: smap
rel : stream_all2

Another interesting type that can be defined as a codatatype is that of the
extended natural numbers:

codatatype enat = EZero | ESuc enat



4 Defining Codatatypes 27

This type has exactly one infinite element, ESuc (ESuc (ESuc (. . . ))), that
represents ∞. In addition, it has finite values of the form ESuc (. . . (ESuc
EZero). . . ).

Here is an example with many constructors:

codatatype ′a process =
Fail
| Skip (cont : “ ′a process ”)
| Action (prefix : ′a) (cont : “ ′a process ”)
| Choice (left : “ ′a process ”) (right : “ ′a process ”)

Notice that the cont selector is associated with both Skip and Action.

4.1.2 Mutual Corecursion

The example below introduces a pair of mutually corecursive types:

codatatype even_enat = Even_EZero | Even_ESuc odd_enat
and odd_enat = Odd_ESuc even_enat

4.1.3 Nested Corecursion

The next examples feature nested corecursion:

codatatype ′a tree i i = Node i i (lbl i i : ′a) (subi i : “ ′a tree i i llist ”)

codatatype ′a tree i s = Node i s (lbl i s : ′a) (subi s : “ ′a tree i s fset ”)

codatatype ′a sm = SM (accept : bool) (trans: “ ′a ⇒ ′a sm ”)

4.2 Command Syntax
4.2.1 codatatype

codatatype : local_theory → local_theory
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codatatype
�� ���

�target

�
�

�

��
� dt-name =

���� dt-ctor�
� |

����
�
�

�

� and
�� ��

�

�
Definitions of codatatypes have almost exactly the same syntax as for data-
types (Section 2.2). The discs_sels option is superfluous because discrimi-
nators and selectors are always generated for codatatypes.

4.3 Generated Constants
Given a codatatype (′a1, . . . ,

′am) t with m > 0 live type variables and n
constructors t .C 1, . . . , t .C n , the same auxiliary constants are generated as
for datatypes (Section 2.3), except that the recursor is replaced by a dual
concept and no size function is produced:

Corecursor: t .corec_t

4.4 Generated Theorems
The characteristic theorems generated by codatatype are grouped in three
broad categories:

• The free constructor theorems (Section 2.4.1) are properties of the con-
structors and destructors that can be derived for any freely generated
type.

• The functorial theorems (Section 2.4.2) are properties of datatypes re-
lated to their BNF nature.

• The coinductive theorems (Section 4.4.1) are properties of datatypes
related to their coinductive nature.

The first two categories are exactly as for datatypes.
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4.4.1 Coinductive Theorems

The coinductive theorems are listed below for ′a llist :

t .coinduct [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn , coinduct t ]:

[[R llist llist ′;
∧
llist llist ′. R llist llist ′ =⇒ lnull llist = lnull llist ′ ∧

(¬ lnull llist −→ ¬ lnull llist ′ −→ lhd llist = lhd llist ′ ∧ R (ltl llist)
(ltl llist ′))]] =⇒ llist = llist ′

t .strong_coinduct [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn ]:

[[R llist llist ′;
∧
llist llist ′. R llist llist ′ =⇒ lnull llist = lnull llist ′ ∧

(¬ lnull llist −→ ¬ lnull llist ′ −→ lhd llist = lhd llist ′ ∧ (R (ltl llist)
(ltl llist ′) ∨ ltl llist = ltl llist ′))]] =⇒ llist = llist ′

t .rel_coinduct [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn , coinduct pred ]:

[[P x y ;
∧
llist llist ′. P llist llist ′ =⇒ lnull llist = lnull llist ′ ∧ (¬ lnull

llist −→ ¬ lnull llist ′ −→ R (lhd llist) (lhd llist ′) ∧ P (ltl llist) (ltl
llist ′))]] =⇒ llist_all2 R x y

t1_. . ._tm .coinduct [case_names t1 . . . tm , case_conclusion D1 . . . Dn ]
t1_. . ._tm .strong_coinduct [case_names t1 . . . tm ,

case_conclusion D1 . . . Dn ]:
t1_. . ._tm .rel_coinduct [case_names t1 . . . tm ,

case_conclusion D1 . . . Dn ]:

Given m > 1 mutually corecursive codatatypes, these coinduction
rules can be used to prove m properties simultaneously.

t .corec:
p a =⇒ corec_llist p g21 q22 g221 g222 a = LNil
¬ p a =⇒ corec_llist p g21 q22 g221 g222 a = LCons (g21 a) (if
q22 a then g221 a else corec_llist p g21 q22 g221 g222 (g222 a))

t .corec_code [code]:
corec_llist p g21 q22 g221 g222 a = (if p a then LNil else LCons
(g21 a) (if q22 a then g221 a else corec_llist p g21 q22 g221 g222
(g222 a)))

t .disc_corec:
p a =⇒ lnull (corec_llist p g21 q22 g221 g222 a)
¬ p a =⇒ ¬ lnull (corec_llist p g21 q22 g221 g222 a)

t .disc_corec_iff [simp]:
lnull (corec_llist p g21 q22 g221 g222 a) = p a
(¬ lnull (corec_llist p g21 q22 g221 g222 a)) = (¬ p a)
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t .sel_corec [simp]:
¬ p a =⇒ lhd (corec_llist p g21 q22 g221 g222 a) = g21 a
¬ p a =⇒ ltl (corec_llist p g21 q22 g221 g222 a) = (if q22 a then
g221 a else corec_llist p g21 q22 g221 g222 (g222 a))

For convenience, codatatype also provides the following collection:

t .simps = t .inject t .distinct t .case t .disc_corec_iff t .sel_corec
t .map t .rel_inject t .rel_distinct t .set

5 Defining Corecursive Functions
Corecursive functions can be specified using the primcorec and primcorec-
ursive commands, which support primitive corecursion, or using the more
general partial_function command. Here, the focus is on the first two.
More examples can be found in the directory ~~/src/HOL/BNF_Examples.

Whereas recursive functions consume datatypes one constructor at a time,
corecursive functions construct codatatypes one constructor at a time. Partly
reflecting a lack of agreement among proponents of coalgebraic methods,
Isabelle supports three competing syntaxes for specifying a function f :

• The destructor view specifies f by implications of the form

. . . =⇒ is_C j (f x 1 . . . xn)

and equations of the form

un_C j i (f x 1 . . . xn) = . . .

This style is popular in the coalgebraic literature.
• The constructor view specifies f by equations of the form

. . . =⇒ f x 1 . . . xn = C j . . .

This style is often more concise than the previous one.
• The code view specifies f by a single equation of the form

f x 1 . . . xn = . . .

with restrictions on the format of the right-hand side. Lazy functional
programming languages such as Haskell support a generalized version
of this style.

All three styles are available as input syntax. Whichever syntax is chosen,
characteristic theorems for all three styles are generated.
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5.1 Introductory Examples
Primitive corecursion is illustrated through concrete examples based on the
codatatypes defined in Section 4.1. More examples can be found in the direc-
tory ~~/src/HOL/BNF_Examples. The code view is favored in the examples
below. Sections 5.1.5 and 5.1.6 present the same examples expressed using
the constructor and destructor views.

5.1.1 Simple Corecursion

Following the code view, corecursive calls are allowed on the right-hand side
as long as they occur under a constructor, which itself appears either directly
to the right of the equal sign or in a conditional expression:

primcorec literate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a llist ” where
“ literate g x = LCons x (literate g (g x ))”

primcorec siterate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a stream ” where
“ siterate g x = SCons x (siterate g (g x ))”

The constructor ensures that progress is made—i.e., the function is produc-
tive. The above functions compute the infinite lazy list or stream [x , g x ,
g (g x ), . . . ]. Productivity guarantees that prefixes [x , g x , g (g x ), . . . , (g
^^ k) x ] of arbitrary finite length k can be computed by unfolding the code
equation a finite number of times.

Corecursive functions construct codatatype values, but nothing prevents
them from also consuming such values. The following function drops every
second element in a stream:

primcorec every_snd :: “ ′a stream ⇒ ′a stream ” where
“every_snd s = SCons (shd s) (stl (stl s))”

Constructs such as let–in, if –then–else, and case–of may appear around
constructors that guard corecursive calls:

primcorec lappend :: “ ′a llist ⇒ ′a llist ⇒ ′a llist ” where
“ lappend xs ys =

(case xs of
LNil ⇒ ys
| LCons x xs ′⇒ LCons x (lappend xs ′ ys))”

Pattern matching is not supported by primcorec. Fortunately, it is easy to
generate pattern-maching equations using the simps_of_case command
provided by the theory ~~/src/HOL/Library/Simps_Case_Conv.

simps_of_case lappend_simps: lappend .code
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This generates the lemma collection lappend_simps :

lappend LNil ys = ys
lappend (LCons xa x ) ys = LCons xa (lappend x ys)

Corecursion is useful to specify not only functions but also infinite objects:

primcorec infty :: enat where
“ infty = ESuc infty ”

The example below constructs a pseudorandom process value. It takes a
stream of actions (s), a pseudorandom function generator (f ), and a pseudo-
random seed (n):

primcorec
random_process :: “ ′a stream ⇒ (int ⇒ int) ⇒ int ⇒ ′a process ”

where
“ random_process s f n =

(if n mod 4 = 0 then
Fail

else if n mod 4 = 1 then
Skip (random_process s f (f n))

else if n mod 4 = 2 then
Action (shd s) (random_process (stl s) f (f n))

else
Choice (random_process (every_snd s) (f ◦ f ) (f n))
(random_process (every_snd (stl s)) (f ◦ f ) (f (f n))))”

The main disadvantage of the code view is that the conditions are tested
sequentially. This is visible in the generated theorems. The constructor and
destructor views offer nonsequential alternatives.

5.1.2 Mutual Corecursion

The syntax for mutually corecursive functions over mutually corecursive data-
types is unsurprising:

primcorec
even_infty :: even_enat and
odd_infty :: odd_enat

where
“even_infty = Even_ESuc odd_infty ” |
“odd_infty = Odd_ESuc even_infty ”
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5.1.3 Nested Corecursion

The next pair of examples generalize the literate and siterate functions (Sec-
tion 5.1.3) to possibly infinite trees in which subnodes are organized either as
a lazy list (tree i i) or as a finite set (tree i s). They rely on the map functions
of the nesting type constructors to lift the corecursive calls:

primcorec iterate i i :: “ (′a ⇒ ′a llist) ⇒ ′a ⇒ ′a tree i i ” where
“ iterate i i g x = Node i i x (lmap (iterate i i g) (g x ))”

primcorec iterate i s :: “ (′a ⇒ ′a fset) ⇒ ′a ⇒ ′a tree i s ” where
“ iterate i s g x = Node i s x (fimage (iterate i s g) (g x ))”

Both examples follow the usual format for constructor arguments associated
with nested recursive occurrences of the datatype. Consider iterate i i . The
term g x constructs an ′a llist value, which is turned into an ′a tree i i llist
value using lmap.

This format may sometimes feel artificial. The following function con-
structs a tree with a single, infinite branch from a stream:

primcorec tree i i_of_stream :: “ ′a stream ⇒ ′a tree i i ” where
“ tree i i_of_stream s =

Node i i (shd s) (lmap tree i i_of_stream (LCons (stl s) LNil))”

A more natural syntax, also supported by Isabelle, is to move corecursive
calls under constructors:

primcorec tree i i_of_stream :: “ ′a stream ⇒ ′a tree i i ” where
“ tree i i_of_stream s =

Node i i (shd s) (LCons (tree i i_of_stream (stl s)) LNil)”

The next example illustrates corecursion through functions, which is a
bit special. Deterministic finite automata (DFAs) are traditionally defined
as 5-tuples (Q , Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite
alphabet, δ is a transition function, q0 is an initial state, and F is a set of
final states. The following function translates a DFA into a state machine:

primcorec sm_of_dfa :: “ (′q ⇒ ′a ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ ′a sm ” where
“ sm_of_dfa δ F q = SM (q ∈ F ) (sm_of_dfa δ F ◦ δ q)”

The map function for the function type (⇒) is composition (op ◦). For
convenience, corecursion through functions can also be expressed using λ-
abstractions and function application rather than through composition. For
example:

primcorec sm_of_dfa :: “ (′q ⇒ ′a ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ ′a sm ” where
“ sm_of_dfa δ F q = SM (q ∈ F ) (λa. sm_of_dfa δ F (δ q a))”

primcorec empty_sm :: “ ′a sm ” where
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“empty_sm = SM False (λ_. empty_sm)”

primcorec not_sm :: “ ′a sm ⇒ ′a sm ” where
“not_sm M = SM (¬ accept M ) (λa. not_sm (trans M a))”

primcorec or_sm :: “ ′a sm ⇒ ′a sm ⇒ ′a sm ” where
“or_sm M N =

SM (accept M ∨ accept N ) (λa. or_sm (trans M a) (trans N a))”

For recursion through curried n-ary functions, n applications of op ◦ are
necessary. The examples below illustrate the case where n = 2:

codatatype (′a, ′b) sm2 =
SM 2 (accept2: bool) (trans2: “ ′a ⇒ ′b ⇒ (′a, ′b) sm2”)

primcorec
sm2_of_dfa :: “ (′q ⇒ ′a ⇒ ′b ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ (′a, ′b) sm2”

where
“ sm2_of_dfa δ F q = SM 2 (q ∈ F ) (op ◦ (op ◦ (sm2_of_dfa δ F )) (δ q))”

primcorec
sm2_of_dfa :: “ (′q ⇒ ′a ⇒ ′b ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ (′a, ′b) sm2”

where
“ sm2_of_dfa δ F q = SM 2 (q ∈ F ) (λa b. sm2_of_dfa δ F (δ q a b))”

5.1.4 Nested-as-Mutual Corecursion

Just as it is possible to recurse over nested recursive datatypes as if they
were mutually recursive (Section 3.1.5), it is possible to pretend that nested
codatatypes are mutually corecursive. For example:

primcorec
iterate i i :: “ (′a ⇒ ′a llist) ⇒ ′a ⇒ ′a tree i i ” and
iterates i i :: “ (′a ⇒ ′a llist) ⇒ ′a llist ⇒ ′a tree i i llist ”

where
“ iterate i i g x = Node i i x (iterates i i g (g x ))” |
“ iterates i i g xs =

(case xs of
LNil ⇒ LNil
| LCons x xs ′⇒ LCons (iterate i i g x ) (iterates i i g xs ′))”

Coinduction rules are generated as iterate i i .coinduct, iterates i i .coinduct, and
iterate i i_iterates i i .coinduct and analogously for strong_coinduct. These rules
and the underlying corecursors are generated on a per-need basis and are kept
in a cache to speed up subsequent definitions.
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5.1.5 Constructor View

The constructor view is similar to the code view, but there is one separate
conditional equation per constructor rather than a single unconditional equa-
tion. Examples that rely on a single constructor, such as literate and siterate,
are identical in both styles.

Here is an example where there is a difference:

primcorec lappend :: “ ′a llist ⇒ ′a llist ⇒ ′a llist ” where
“ lnull xs =⇒ lnull ys =⇒ lappend xs ys = LNil ” |
“_ =⇒ lappend xs ys = LCons (lhd (if lnull xs then ys else xs))

(if xs = LNil then ltl ys else lappend (ltl xs) ys)”

With the constructor view, we must distinguish between the LNil and the
LCons case. The condition for LCons is left implicit, as the negation of that
for LNil.

For this example, the constructor view is slighlty more involved than the
code equation. Recall the code view version presented in Section 5.1.1. The
constructor view requires us to analyze the second argument (ys). The code
equation generated from the constructor view also suffers from this.

In contrast, the next example is arguably more naturally expressed in the
constructor view:

primcorec
random_process :: “ ′a stream ⇒ (int ⇒ int) ⇒ int ⇒ ′a process ”

where
“n mod 4 = 0 =⇒ random_process s f n = Fail ” |
“n mod 4 = 1 =⇒

random_process s f n = Skip (random_process s f (f n))” |
“n mod 4 = 2 =⇒
random_process s f n = Action (shd s) (random_process (stl s) f (f n))” |

“n mod 4 = 3 =⇒
random_process s f n = Choice (random_process (every_snd s) f (f n))
(random_process (every_snd (stl s)) f (f n))”

Since there is no sequentiality, we can apply the equation for Choice without
having first to discharge n mod 4 6= 0, n mod 4 6= 1, and n mod 4 6= 2.
The price to pay for this elegance is that we must discharge exclusivity proof
obligations, one for each pair of conditions (n mod 4 = i , n mod 4 = j )
with i < j. If we prefer not to discharge any obligations, we can enable the
sequential option. This pushes the problem to the users of the generated
properties.
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5.1.6 Destructor View

The destructor view is in many respects dual to the constructor view. Con-
ditions determine which constructor to choose, and these conditions are in-
terpreted sequentially or not depending on the sequential option. Consider
the following examples:

primcorec literate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a llist ” where
“¬ lnull (literate _ x )” |
“ lhd (literate _ x ) = x ” |
“ ltl (literate g x ) = literate g (g x )”

primcorec siterate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a stream ” where
“ shd (siterate _ x ) = x ” |
“ stl (siterate g x ) = siterate g (g x )”

primcorec every_snd :: “ ′a stream ⇒ ′a stream ” where
“ shd (every_snd s) = shd s ” |
“ stl (every_snd s) = stl (stl s)”

The first formula in the local .literate specification indicates which construc-
tor to choose. For local .siterate and local .every_snd, no such formula is
necessary, since the type has only one constructor. The last two formulas are
equations specifying the value of the result for the relevant selectors. Core-
cursive calls appear directly to the right of the equal sign. Their arguments
are unrestricted.

The next example shows how to specify functions that rely on more than
one constructor:

primcorec lappend :: “ ′a llist ⇒ ′a llist ⇒ ′a llist ” where
“ lnull xs =⇒ lnull ys =⇒ lnull (lappend xs ys)” |
“ lhd (lappend xs ys) = lhd (if lnull xs then ys else xs)” |
“ ltl (lappend xs ys) = (if xs = LNil then ltl ys else lappend (ltl xs) ys)”

For a codatatype with n constructors, it is sufficient to specify n − 1 dis-
criminator formulas. The command will then assume that the remaining
constructor should be taken otherwise. This can be made explicit by adding

“_ =⇒ ¬ lnull (lappend xs ys)”
to the specification. The generated selector theorems are conditional.

The next example illustrates how to cope with selectors defined for several
constructors:

primcorec
random_process :: “ ′a stream ⇒ (int ⇒ int) ⇒ int ⇒ ′a process ”

where
“n mod 4 = 0 =⇒ random_process s f n = Fail ” |
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“n mod 4 = 1 =⇒ is_Skip (random_process s f n)” |
“n mod 4 = 2 =⇒ is_Action (random_process s f n)” |
“n mod 4 = 3 =⇒ is_Choice (random_process s f n)” |
“cont (random_process s f n) = random_process s f (f n)” of Skip |
“prefix (random_process s f n) = shd s ” |
“cont (random_process s f n) = random_process (stl s) f (f n)” of Action |
“ left (random_process s f n) = random_process (every_snd s) f (f n)” |
“ right (random_process s f n) = random_process (every_snd (stl s)) f (f n)”

Using the of keyword, different equations are specified for cont depending
on which constructor is selected.

Here are more examples to conclude:

primcorec
even_infty :: even_enat and
odd_infty :: odd_enat

where
“even_infty 6= Even_EZero ” |
“un_Even_ESuc even_infty = odd_infty ” |
“un_Odd_ESuc odd_infty = even_infty ”

primcorec iterate i i :: “ (′a ⇒ ′a llist) ⇒ ′a ⇒ ′a tree i i ” where
“ lbl i i (iterate i i g x ) = x ” |
“ subi i (iterate i i g x ) = lmap (iterate i i g) (g x )”

5.2 Command Syntax
5.2.1 primcorec and primcorecursive

primcorec : local_theory → local_theory
primcorecursive : local_theory → proof (prove)

primcorec
�� ���

�primcorecursive
�� ��

�
�

�
�target

�
�

�

��
��

�pcr-option

�
�

fixes where
�� �� pcr-formula�

� |
����

�
�
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pcr-option

(
���� sequential

�� ���
�exhaustive

�� ��
�
�

)
����

pcr-formula

�
�thmdecl

�
�

prop �
�of

�����
�term

�
�

�
�

The primcorec and primcorecursive commands introduce a set of mutu-
ally corecursive functions over codatatypes.

The syntactic entity target can be used to specify a local context, fixes
denotes a list of names with optional type signatures, thmdecl denotes an
optional name for the formula that follows, and prop denotes a HOL propo-
sition [9].

The optional target is optionally followed by one or both of the following
options:

• The sequential option indicates that the conditions in specifications
expressed using the constructor or destructor view are to be interpreted
sequentially.

• The exhaustive option indicates that the conditions in specifications
expressed using the constructor or destructor view cover all possible
cases.

The primcorec command is an abbreviation for primcorecursive with
by auto? to discharge any emerging proof obligations.

6 Introducing Bounded Natural Functors
The (co)datatype package can be set up to allow nested recursion through
arbitrary type constructors, as long as they adhere to the BNF requirements
and are registered as BNFs. It is also possible to declare a BNF abstractly
without specifying its internal structure.
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6.1 Bounded Natural Functors
Bounded natural functors (BNFs) are a semantic criterion for where (co)re-
cursion may appear on the right-hand side of an equation [3, 8].

An n-ary BNF is a type constructor equipped with a map function (func-
torial action), n set functions (natural transformations), and an infinite car-
dinal bound that satisfy certain properties. For example, ′a llist is a unary
BNF. Its relator llist_all2 :: (′a ⇒ ′b ⇒ bool) ⇒ ′a llist ⇒ ′b llist ⇒ bool
extends binary predicates over elements to binary predicates over parallel
lazy lists. The cardinal bound limits the number of elements returned by the
set function; it may not depend on the cardinality of ′a.

The type constructors introduced by datatype_new and codatatype
are automatically registered as BNFs. In addition, a number of old-style
datatypes and non-free types are preregistered.

Given an n-ary BNF, the n type variables associated with set functions,
and on which the map function acts, are live; any other variables are dead.
Nested (co)recursion can only take place through live variables.

6.2 Introductory Examples
The example below shows how to register a type as a BNF using the bnf
command. Some of the proof obligations are best viewed with the theory
Cardinal_Notations, located in ~~/src/HOL/Library, imported.

The type is simply a copy of the function space ′d ⇒ ′a, where ′a is live
and ′d is dead. We introduce it together with its map function, set function,
and relator.

typedef (′d , ′a) fn = “UNIV :: (′d ⇒ ′a) set ”
by simp

setup_lifting type_definition_fn

lift_definition map_fn :: “ (′a ⇒ ′b) ⇒ (′d , ′a) fn ⇒ (′d , ′b) fn ” is “op ◦” .
lift_definition set_fn :: “ (′d , ′a) fn ⇒ ′a set ” is range .

lift_definition
rel_fn :: “ (′a ⇒ ′b ⇒ bool) ⇒ (′d , ′a) fn ⇒ (′d , ′b) fn ⇒ bool ”

is
“ rel_fun (op =)” .

bnf “ (′d , ′a) fn ”
map: map_fn
sets: set_fn
bd : “natLeq +c |UNIV :: ′d set |”
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rel : rel_fn
proof −
show “map_fn id = id ”
by transfer auto

next
fix F G show “map_fn (G ◦ F ) = map_fn G ◦ map_fn F ”
by transfer (auto simp add : comp_def )

next
fix F f g
assume “

∧
x . x ∈ set_fn F =⇒ f x = g x ”

thus “map_fn f F = map_fn g F ”
by transfer auto

next
fix f show “ set_fn ◦ map_fn f = op ‘ f ◦ set_fn ”
by transfer (auto simp add : comp_def )

next
show “card_order (natLeq +c |UNIV :: ′d set | )”
apply (rule card_order_csum)
apply (rule natLeq_card_order)
by (rule card_of_card_order_on)

next
show “cinfinite (natLeq +c |UNIV :: ′d set | )”
apply (rule cinfinite_csum)
apply (rule disjI 1)
by (rule natLeq_cinfinite)

next
fix F :: “ (′d , ′a) fn ”
have “ |set_fn F | ≤o |UNIV :: ′d set |” (is “_ ≤o ?U ”)
by transfer (rule card_of_image)

also have “?U ≤o natLeq +c ?U ”
by (rule ordLeq_csum2) (rule card_of_Card_order)

finally show “ |set_fn F | ≤o natLeq +c |UNIV :: ′d set |” .
next
fix R S
show “ rel_fn R OO rel_fn S ≤ rel_fn (R OO S )”
by (rule, transfer) (auto simp add : rel_fun_def )

next
fix R
show “ rel_fn R =

(BNF_Def .Grp {x . set_fn x ⊆ Collect (split R)} (map_fn fst))−− OO
BNF_Def .Grp {x . set_fn x ⊆ Collect (split R)} (map_fn snd)”

unfolding Grp_def fun_eq_iff relcompp.simps conversep.simps
apply transfer
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unfolding rel_fun_def subset_iff image_iff
by auto (force, metis pair_collapse)

qed

print_theorems
print_bnfs

Using print_theorems and print_bnfs, we can contemplate and show the
world what we have achieved.

This particular example does not need any nonemptiness witness, because
the one generated by default is good enough, but in general this would be nec-
essary. See ~~/src/HOL/Basic_BNFs.thy, ~~/src/HOL/Library/FSet.thy,
and ~~/src/HOL/Library/Multiset.thy for further examples of BNF reg-
istration, some of which feature custom witnesses.

The next example declares a BNF axiomatically. This can be convenient
for reasoning abstractly about an arbitrary BNF. The bnf_axiomatization
command below introduces a type (′a, ′b, ′c) F, three set constants, a map
function, a relator, and a nonemptiness witness that depends only on ′a. (The
type ′a ⇒ (′a, ′b, ′c) F of the witness can be read as an implication: If we
have a witness for ′a, we can construct a witness for (′a, ′b, ′c) F.) The BNF
properties are postulated as axioms.

bnf_axiomatization (setA: ′a, setB : ′b, setC : ′c) F
[wits: “ ′a ⇒ (′a, ′b, ′c) F ”]

print_theorems
print_bnfs

6.3 Command Syntax
6.3.1 bnf

bnf : local_theory → proof (prove)
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bnf
�� ���

�target

�
�

�
�name :

����
�
�

type �

��
�map:

�� ��term �
�sets:

�� �� term�
�

�
�

�
�

bd:
�� ��term �

��
��

�wits:
�� �� term�

�
�
�

�
�

�
�rel:

�� ��term

�
�

The bnf command registers an existing type as a bounded natural functor
(BNF). The type must be equipped with an appropriate map function (func-
torial action). In addition, custom set functions, relators, and nonemptiness
witnesses can be specified; otherwise, default versions are used.

The syntactic entity target can be used to specify a local context, type
denotes a HOL type, and term denotes a HOL term [9].

6.3.2 bnf_axiomatization

bnf_axiomatization : local_theory → local_theory
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bnf_axiomatization
�� ���

�target

�
�

�
�tyargs

�
�

name �

��
��

�wit-types

�
�

�
�mixfix

�
�

�
�map-rel

�
�

wit-types

[
����wits

�� ��:
����types ]

����
The bnf_axiomatization command declares a new type and associated
constants (map, set, relator, and cardinal bound) and asserts the BNF prop-
erties for these constants as axioms.

The syntactic entity target can be used to specify a local context, name
denotes an identifier, typefree denotes fixed type variable (′a, ′b, . . . ), and
mixfix denotes the usual parenthesized mixfix notation [9].

Type arguments are live by default; they can be marked as dead by en-
tering “dead ” in front of the type variable (e.g., “(dead ′a)”) instead of an
identifier for the corresponding set function. Witnesses can be specified by
their types. Otherwise, the syntax of bnf_axiomatization is identical to
the left-hand side of a datatype_new or codatatype definition.

The command is useful to reason abstractly about BNFs. The axioms are
safe because there exist BNFs of arbitrary large arities. Applications must
import the theory BNF_Axiomatization, located in the directory ~~/src/
HOL/Library, to use this functionality.

6.3.3 print_bnfs

print_bnfs : local_theory →

print_bnfs
�� ��
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7 Deriving Destructors and Theorems for Free
Constructors

The derivation of convenience theorems for types equipped with free con-
structors, as performed internally by datatype_new and codatatype, is
available as a stand-alone command called free_constructors.

7.1 Command Syntax
7.1.1 free_constructors

free_constructors : local_theory → proof (prove)

free_constructors
�� ���

�target

�
�

dt-options �

��
�name for

�� �� fc-ctor�
� |

����
�
�

�

��
��

�where
�� �� prop�

� |
����

�
�

�
�

fc-ctor

�
�name :

����
�
�

term �
�name

�
�

The free_constructors command generates destructor constants for freely
constructed types as well as properties about constructors and destructors. It



REFERENCES 45

also registers the constants and theorems in a data structure that is queried
by various tools (e.g., function).

The syntactic entity target can be used to specify a local context, name
denotes an identifier, prop denotes a HOL proposition, and term denotes a
HOL term [9].

The syntax resembles that of datatype_new and codatatype defini-
tions (Sections 2.2 and 4.2). A constructor is specified by an optional name
for the discriminator, the constructor itself (as a term), and a list of optional
names for the selectors.

Section 2.4 lists the generated theorems. For bootstrapping reasons, the
generally useful [fundef_cong ] attribute is not set on the generated case_cong
theorem. It can be added manually using declare.
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